首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on microbore liquid chromatography (microLC) and capillary electrophoresis (CE) separation of glycopeptides and high-mannose-type oligosaccharides, digested from recombinant phospholipase C, expressed in Pichia pastoris. The glycopeptides were subject to microLC/electrospray ionization/mass spectrometry (ESI-MS) and microLC/ESI-tandem MS (MS/MS) analysis that revealed high-mannose structure size variation between Man(7)GlcNAc(2) and Man(14)GlcNAc(2). Then, high-performance CE was applied to identify possible positional isomers of the high-mannose structures. For the CE experiments, the oligosaccharides were released from the glycoproteins by peptide-N-glycosidase F and labeled with 1-aminopyrene-3,6,8-trisulfonic acid (APTS). Excellent separation of the possible positional isomers was attained, suggesting one for Man(9)GlcNAc(2), two for Man(10)GlcNAc(2), three for Man(11)GlcNAc(2), Man(12)GlcNAc(2), and Man(13)GlcNAc(2), and two for Man(14)GlcNAc(2). The CE results provided complementary information to the microLC/ESI-MS and MS/MS data with respect to the possible number of positional isomers.  相似文献   

2.
Wang LX  Ni J  Singh S  Li H 《Chemistry & biology》2004,11(1):127-134
Human antibody 2G12 broadly neutralizes human immunodeficiency virus type 1 (HIV-1) isolates and shows protective activity against viral challenge in animal models. Previous mutational analysis suggested that 2G12 recognized a novel cluster of high-mannose type oligosaccharides on HIV-1 gp120. To explore the carbohydrate antigen for HIV-1 vaccine design, we have studied the binding of 2G12 to an array of HIV-1 high-mannose type oligosaccharides by competitive ELISAs and found that Man9GlcNAc is 210- and 74-fold more effective than Man5GlcNAc and Man6GlcNAc in binding to 2G12. The results establish that the larger high-mannose oligosaccharide on HIV-1 is the favorable subunit for 2G12 recognition. To mimic the putative epitope of 2G12, we have created scaffold-based multivalent Man9 clusters and found that the galactose-scaffolded bi-, tri-, and tetra-valent Man9 clusters are 7-, 22-, and 73-fold more effective in binding to 2G12 than the monomeric Man9GlcNAc2Asn. The experimental data shed light on further structural optimization of epitope mimics for developing a carbohydrate-based HIV-1 vaccine.  相似文献   

3.
A strategy based on negative ion electrospray ionization tandem mass spectrometry and closed-ring labeling with both 8-aminopyrene-1,3,6-trisulfonate (APTS) and p-aminobenzoic acid ethyl ester (ABEE) was developed for linkage and branch determination of high-mannose oligosaccharides. X-type cross-ring fragment ions obtained from APTS-labeled oligosaccharides by charge remote fragmentation provided information on linkages near the non-reducing terminus. In contrast, A-type cross-ring fragment ions observed from ABEE-labeled oligosaccharides yielded information on linkages near the reducing terminus. This complementary information provided by APTS- and ABEE-labeled oligosaccharides was utilized to delineate the structures of the high-mannose oligosaccharides. As a demonstration of this approach, the linkages and branches of high-mannose oligosaccharides Man(5)GlcNAc(2), Man(6)GlcNAc(2), Man(8)GlcNAc(2), and Man(9)GlcNAc(2) cleaved from the ribonuclease B were assigned from MS(2) spectra of ABEE- and APTS-labeled derivatives.  相似文献   

4.
A detailed understanding of the molecular mechanism of chaperone-assisted protein quality control is often hampered by the lack of well-defined homogeneous glycoprotein probes. We describe here a highly convergent chemoenzymatic synthesis of the monoglucosylated glycoforms of bovine ribonuclease (RNase) as specific ligands of lectin-like chaperones calnexin (CNX) and calreticulin (CRT) that are known to recognize the monoglucosylated high-mannose oligosaccharide component of glycoproteins in protein folding. The synthesis of a selectively modified glycoform Gal(1)Glc(1)Man(9)GlcNAc(2)-RNase was accomplished by chemical synthesis of a large N-glycan oxazoline and its subsequent enzymatic ligation to GlcNAc-RNase under the catalysis of a glycosynthase. Selective removal of the terminal galactose by a β-galactosidase gave the Glc(1)Man(9)GlcNAc(2)-RNase glycoform in excellent yield. CD spectroscopic analysis and RNA-hydrolyzing assay indicated that the synthetic RNase glycoforms maintained essentially the same global conformations and were fully active as the natural bovine ribonuclease B. SPR binding studies revealed that the Glc(1)Man(9)GlcNAc(2)-RNase had high affinity to lectin CRT, while the synthetic Man(9)GlcNAc(2)-RNase glycoform and natural RNase B did not show CRT-binding activity. These results confirmed the essential role of the glucose moiety in the chaperone molecular recognition. Interestingly, the galactose-masked glycoform Gal(1)Glc(1)Man(9)GlcNAc(2)-RNase also showed significant affinity to lectin CRT, suggesting that a galactose β-1,4-linked to the key glucose moiety does not significantly block the lectin binding. These synthetic homogeneous glycoprotein probes should be valuable for a detailed mechanistic study on how molecular chaperones work in concert to distinguish between misfolded and folded glycoproteins in the protein quality control cycle.  相似文献   

5.
Negative ion tandem mass spectrometry (MS/MS) spectra of three isomeric triantennary N-linked glycans provided clear differentiation between the isomers and confirmed the occurrence of an isomer that was substituted with galactose on a bisecting GlcNAc (1 --> 4-substituted on the core mannose) residue recently reported by Takegawa et al. from N-glycans released from human immunoglobulin G (IgG). We extend this analysis of human serum IgG to reveal an analogue of the fucosylated triantennary glycan reported by Takegawa et al. together with a third compound that lacked both the sialic acid and the fucose residues. In addition, we demonstrate the biosynthesis of bisected hybrid-type glycans with the galactose modification, with and without core fucose, on the stem cell marker glycoprotein, 19A, expressed in a partially ricin-resistant human embryonic kidney cell line. It would appear, therefore, that this modification of N-linked glycans containing a galactosylated bisecting GlcNAc residue may be more common than originally thought. Negative ion MS/MS analysis of glycans is likely to prove an invaluable tool in the analysis and monitoring of therapeutic glycoproteins.  相似文献   

6.
The synthesis and antibody-binding affinity of a novel template-assembled oligomannose cluster as an epitope mimic for human anti-HIV antibody 2G12 are described. Cholic acid was chosen as the scaffold and three high-mannose type oligosaccharide (Man(9)GlcNAc(2)Asn) moieties were selectively attached at the 3alpha, 7alpha, and 12alpha-positions of the scaffold through a series of regioselective transformations. Binding studies revealed that the synthetic oligosaccharide cluster is 46-fold more effective than the subunit Man(9)GlcNAc(2)Asn in inhibiting 2G12-binding to immobilized gp120. The scaffold approach described in this paper provides an avenue to designing more effective epitope mimics for antibody 2G12 in the hope of developing a carbohydrate-based vaccine against HIV-1.  相似文献   

7.
《Analytical letters》2012,45(11):1711-1724
Abstract

A MALDI mass spectrometry method using Bruker Daltonic's LIFT technology for MS/MS analysis has been developed for profiling and characterizing low abundant N-glycans from recombinant immunoglobulin G (IgG) antibodies. In this method, Endoglycosidase H (Endo H) released N-glycans are derivatized at their reducing end with 2-aminobenzamide (2-AB) and separated by normal phase chromatography. Endo H hydrolyses the bond between the two GlcNAc residues of the trimannosyl core of high mannose and hybrid N-linked glycans, leaving the core GlcNAc attached to the protein. High mannose and hybrid type N-glycans are released from the glycoprotein whereas the more abundant, complex biantennary type oligosaccharide structures are unaffected. Analysis of Endo H treated glycan moieties by MALDI mass spectrometry identified several minor species of high mannose and hybrid type glycans. Subsequent MALDI TOF MS/MS analysis of the resulting products yielded information about structural features of the high mannose and hybrid type glycans. This study involving Endo H treatment followed by MALDI mass spectrometry coupled with LIFT technology for MS/MS analysis offers a specific and sensitive technique for visualizing, and characterizing minor glycan species.  相似文献   

8.
Endo-β-N-acetylglucosaminidase (Endo H) from Streptomyces plicatus hydrolyzes the core di-GlcNAc units of asparagine-linked oligosaccharides and is regarded as an important tool for glycobiology research. In the present study, we established a large-scale system to produce secreted Endo H using a silkworm-baculovirus expression system (silkworm-BES). The recombinant Endo H purified from silkworm hemolymph had activity comparable to that from recombinant Escherichia coli. As well as its well-characterized substrate RNase B, the Endo H from silkworm-BES was able to deglycosylate the high-mannose glycoproteins from silkworm hemolymph. Interestingly, the secretion amount of recombinant Endo H was significantly varied among the different silkworm strains, which could provide valuable information for larger-scale protein productions from silkworm-BES.  相似文献   

9.
An efficient chemoenzymatic method for the construction of homogeneous N-glycoproteins was described that explores the transglycosylation activity of the endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae (Endo-A) with synthetic sugar oxazolines as the donor substrates. First, an array of large oligosaccharide oxazolines were synthesized and evaluated as substrates for the Endo-A-catalyzed transglycosylation by use of ribonuclease B as a model system. The experimental results showed that Endo-A could tolerate modifications at the outer mannose residues of the Man3GlcNAc-oxazoline core, thus allowing introduction of large oligosaccharide ligands into a protein and meanwhile preserving the natural, core N-pentasaccharide (Man3GlcNAc2) structure in the resulting glycoprotein upon transglycosylation. In addition to ligands for galectins and mannose-binding lectins, azido functionality could be readily introduced at the N-pentasaccharide (Man3GlcNAc2) core by use of azido-containing Man3GlcNAc oxazoline as the donor substrate. The introduction of azido functionality permits further site-specific modifications of the resulting glycoproteins, as demonstrated by the successful attachment of two copies of alphaGal epitopes to ribonuclease B. This study reveals a broad substrate specificity of Endo-A for transglycosylation, and the chemoenzymatic method described here points to a new avenue for quick access to various homogeneous N-glycoproteins for structure-activity relationship studies and for biomedical applications.  相似文献   

10.
Zhang W  Wang H  Zhang L  Yao J  Yang P 《Talanta》2011,85(1):499-505
Endoglycosidase is a class of glycosidases that specifically cleaves the glycosidic bond between two proximal residues of GlcNAc in the pentasaccharide core of N-glycan, leaving the innermost GlcNAc still attached to its parent protein, which provides a different diagnostic maker for N-glycosylation site assignment. This study aims to validate the use of endoglycosidase for high throughput N-glycosylation analysis. An endoglycosidase of Endo H and the conventional PNGase F were employed, with a similar accessible procedure, for large-scale assignment of N-glycosylation sites and then N-glycoproteome for rat liver tissue. ConA affinity chromatography was used to enrich selectively high-mannose and hybrid glycopeptides before enzymatic deglycosylation. As a result, a total of 1063 unique N-glycosites were identified by nano liquid chromatography tandem mass spectrometry, of which 53.0% were unknown in the Swiss-Prot database and 47.1% could be assigned only by either of the methods, confirmed the possibility of large-scale glycoproteomics by use of endoglycosidase. In addition, 11 glycosites were assigned with core-fucosylation by Endo H. A comparison between the two enzymatic deglycosylation methods was also investigated. Briefly, Endo H provides a more confident assignment but a smaller dataset compared with PNGase F, showing the complementary nature of the two N-glycosite assignment methods.  相似文献   

11.
Biosynthesis and maturation of cellular membrane glycoproteins   总被引:2,自引:0,他引:2  
The biosynthesis and the processing of asparagine-linked oligosaccharides of cellular membrane glycoproteins were examined in monolayer cultures of BHK21 cells and human diploid fibroblasts after pulse- and pulse-chase labeling with [2-3H]mannose. After pronase digestion, radiolabeled glycopeptides were characterized by high-resolution gel filtration, with or without additional digestion with various exoglycosidases and endoglycosidases. Pulse-labeled glycoproteins contained a relatively homogenous population of neutral oligosaccharides (major species: Man9GlcNAc2ASN). The vast majority of these asparagine-linked oligosaccharides was smaller than the major fraction of lipid-linked oligosaccharides from the cell and was apparently devoid of terminal glucose. After pulse-chase or long labeling periods, a significant fraction of the large oligomannosyl cores was processed by removal of mannose units and addition of branch sugars (NeuNAc-Gal-GlcNAc), resulting in complex acidic structures containing three and possibly five mannoses. In addition, some of the large oligomannosyl cores were processed by the removal of only several mannoses, resulting in a mixture of neutral structures with 5-9 mannoses. This oligomannosyl core heterogeneity in both neutral and acidic oligosaccharides linked to asparagine in cellular membrane glycoproteins was analogous to the heterogeneity reported for the oligosaccharides of avian RNA tumor virus glycoproteins (Hunt LA, Wright SE, Etchison JR, Summers DF: J Virol 29:336, 1979).  相似文献   

12.
Convergent and stereoselective synthetic routes to Man9GlcNAc2 (1b), alpha-Glc1M9GlcNAc2 (2b), and its stereoisomer beta-Glc1M9GlcNAc2 (3) were established. Interaction analysis of 2b with CRT was measured by 1H NMR spectroscopy, and the first NMR-based evidence for the specific binding of CRT to 2b was obtained.  相似文献   

13.
The N-linked oligosaccharides from human urinary trypsin inhibitor were purified and their structures were investigated by compositional analysis, the two-dimensional sugar map method and 500 MHz 1H-NMR. The results revealed that they were composed of disialosyl, monosialosyl and asialosyl oligosaccharides, which have the common biantennary core structure; Gal1-4GlcNAc1-2Man1-3(Gal1-4GlcNAc1-2Man1-6)M an1-4GlcNAc1-4GlcNAc.  相似文献   

14.
Structures of N-glycans released from rat CEACAM1 expressed in human embryonic kidney cells were determined by MALDI and negative ion nanospray MS/MS techniques. The major carbohydrates were bi-, tri- and tetra-antennary complex glycans with and without sialic acid, fucose and bisecting GlcNAc residues. High-mannose glycans, predominantly Man(5)GlcNAc(2), were also found. The negative ion fragmentation technique easily identified the branching pattern of the triantennary glycans (mainly branched on the 6-antenna) and the presence of 'bisecting' GlcNAc residues (attached to the 4-position of the core mannose), features that are difficult to determine by traditional techniques. Sialic acids were in both alpha2-3 and alpha2-6 linkage as determined by MALDI-TOF MS following linkage-specific derivatization.  相似文献   

15.
[M + NO3]- And [M + (NO3)2]2- ions were produced by electrospray from neutral high-mannose ([Man](5-9)[GlcNAc]2, [Glc](1-3)[Man](4-9)[GlcNAc]2) N-linked glycans and their 2-aminobenzamide derivatives sprayed from methanol:water containing ammonium nitrate. Low energy collision-induced decomposition (CID) spectra of both types of ions were almost identical and dominated by cross-ring and C-type fragments, unlike the corresponding spectra of the positive ions that contained mainly B- and Y-type glycosidic fragments. This behavior could be rationalized by an initial proton abstraction from various hydroxy groups by the initially-formed anionic adduct. These negative ion spectra were more informative than the corresponding positive ion spectra and contained prominent ions that were diagnostic of structural features such as the composition of individual antennas that were not easily obtainable by other means. C-ions defined the sequence of the constituent monosaccharide residues. Detailed fragmentation mechanisms are proposed to account for many of the diagnostic ions.  相似文献   

16.
结合自制亲水固相萃取富集柱和生物质谱鉴定技术,实现了糖基化蛋白质核糖核酸酶B的糖含量测定、糖基化位点确认、聚糖富集及结构表征,以及不同糖型相对丰度分析。结果表明:其糖含量8.47%,糖基化位点为34位的Asn,糖链主要为5种高甘露糖型结构(Man5-9GlcNAc2)。所建立的HILIC富集技术,有利于针对微量生物样本,如生物工程药物糖蛋白及重要功能糖蛋白,开展位点特异性糖链结构解析,为糖蛋白质的药效或功能研究提供线索。  相似文献   

17.
The electrospray mass spectra and collision-induced fragmentation of neutral N-linked glycans obtained from glycoproteins were examined with a Q-TOF mass spectrometer. The glycans were ionized most effectively as adducts of alkali metals, with lithium providing the most abundant signal and caesium the least. Singly charged ions generally gave higher ion currents than doubly charged ions. Addition of formic acid could be used to produce [M + H]+ ions, but these ions were always accompanied by abundant cone-voltage fragments. The energy required for collision-induced fragmentation was found to increase in a linear manner as a function of mass with the [M + Na]+ ions requiring about four times as much energy as the [M + H]+ ions for complete fragmentation of the molecular ions. Fragmentation of the [M + H]+ ions gave predominantly B- and Y-type glycosidic fragments whereas the [M + Na]+ and [M + Li]+ ions produced a number of additional fragments including those derived from cross-ring cleavages. Little fragmentation was observed from the [M + K]+ and [M + Rb]+ ions and the only fragment to be observed from the [M + Cs]+ ion was Cs+. The [M + Na]+ and [M + Li]+ ions from all the N-linked glycans gave abundant fragments resulting from loss of the terminal GlcNAc moiety and prominent, though weaker, ions as the result of 0,2A and 2,4A cross-ring cleavages of this residue. Most other ions were the result of successive additional losses of residues from the non-reducing terminus. This pattern was particularly prominent with glycans containing several non-reducing GlcNAc residues where successive losses of 203 u were observed. Many of the ions in the low-mass range were products of several different fragmentation routes but still provided structural information. Possibly of most diagnostic importance was an ion formed by loss of 221 u (GlcNAc molecule) from an ion that had lost the 3-antenna and the chitobiose core. This latter ion, although coincident in mass with some other 'internal' fragments, often provided additional information on the composition of the antennae. Other ions defining antenna composition were weak cross-ring fragments produced from the core branching mannose residue. Glycans containing Gal-GlcNAc residues showed successive losses of this moiety, particularly from the B-type fragments resulting from loss of the reducing-terminal GlcNAc residue. The [M + Na]+ and [M + Li]+ ions from high-mannose and hybrid glycans gave a series of ions of composition (Man)nNa/Li+ where n = 1 to the total number of glycans in the molecule, allowing these sugars to be distinguished from the more highly processed complex glycans. Other ions in the spectra of the high-mannose glycans were diagnostic of chain branching but insufficient information was available to determine their mode of formation.  相似文献   

18.
Protein‐carbohydrate interactions are at the heart of a variety of essential molecular recognition events. Hevein, a model lectin related to the superantigen family, recognizes the trisaccharide core of N‐glycoproteins ( 1 ). A combined approach of NMR spectroscopy and molecular modeling has permitted us to demonstrate that an Asn‐linked Man(GlcNAc)2 ( 2 ) is bound with even higher affinity than (GlcNAc)3. The molecular recognition process entails conformational selection of only one of the possibilities existing for chitooligosaccharides. The deduced 3D structure of the hevein/ 2 complex permits the extension of polypeptide chains from the Asn moiety of 2 , as well as glycosylation at Man O‐3 and Man O‐6 of the terminal sugar. Given the ubiquity of the Man(GlcNAc)2 core in all mammalian N‐glycoproteins, the basic recognition mode presented herein might be extended to a variety of systems with biomedical importance.  相似文献   

19.
N-linked oligosaccharides from glycoproteins (N-glycans) can be conveniently assembled with a building block approach. A protected form of the core trisaccharide (beta-mannosyl chitobiose) was identified as a key building block. The chitobiose part of the core trisaccharide was built from a glycosyl fluoride, which served as a precursor for the reducing GlcNAc azide and the inner GlcNAc moiety. Beta-mannosylation was accomplished at the trisaccharide stage by intramolecular inversion of a beta-glucosyl chitobiose. The benzylidene protection of the beta-mannoside and the azido group at the reducing end of the core trisaccharide allow modular synthesis of N-glycans and their glycoconjugates.  相似文献   

20.
Cyanovirin-N (CVN) is a monomeric 11 kDa cyanobacterial protein that potently inactivates diverse strains of human immunodeficiency virus (HIV) at the level of cell fusion by virtue of high affinity interactions with the surface envelope glycoprotein gp120. Several lines of evidence have suggested that CVN-gp120 interactions are in part mediated by N-linked complex carbohydrates present on gp120, but experimental evidence has been lacking. To this end we screened a comprehensive panel of carbohydrates which represent structurally the N-linked carbohydrates found on gp120 for their ability to inhibit the fusion-blocking activity of CVN in a quantitative HIV-1 envelope-mediated cell fusion assay. Our results show that CVN specifically recognizes with nanomolar affinity Man(9)GlcNAc(2) and the D1D3 isomer of Man(8)GlcNAc(2). Nonlinear least squares best fitting of titration data generated using the cell fusion assay show that CVN binds to gp120 with an equilibrium association constant (K(a)) of 2.4 (+/- 0.1) x 10(7) M(-1) and an apparent stoichiometry of 2 equiv of CVN per gp120, Man(8)GlcNAc(2) D1D3 acts as a divalent ligand (2 CVN:1 Man(8)) with a K(a) of 5.4 (+/- 0.5) x 10(7) M(-1), and Man(9)GlcNAc(2) functions as a trivalent ligand (3 CVN:1 Man(9)) with a K(a) of 1.3 (+/- 0.3) x 10(8) M(-1). Isothermal titration calorimetry experiments of CVN binding to Man(9)GlcNAc(2) at micromolar concentrations confirmed the nanomolar affinity (K(a) = 1.5 (+/- 0.9) x 10(8) M(-1)), and the fitted data indicated a stoichiometry equal to approximately one (1 Man(9):1 CVN). The 1:1 stoichiometry at micromolar concentrations suggested that CVN has not only a high affinity binding site-relevant to the studies at nM concentrations-but a lower affinity site as well that facilitates cross-linking of CVN-oligomannose at micromolar concentrations or higher. The specificity of CVN for Man(8) D1D3 and Man(9) over the D1D2 isomer of Man(8) indicated that the minimum structure required for high affinity binding comprises Manalpha1 --> 2Manalpha. By following the (1)H-(15)N correlation spectrum of (15)N-labeled CVN upon titration with this disaccharide, we unambiguously demonstrate that CVN recognizes and binds to the disaccharide Manalpha1 --> 2Manalpha via two distinct binding sites of differing affinities located on opposite ends of the protein. The high affinity site has a K(a) of 7.2 (+/- 4) x 10(6) M(-1) and the low affinity site a K(a) of 6.8 (+/- 4) x 10(5) M(-1) as determined by isothermal titration calorimetry. Mapped surfaces of the carbohydrate binding sites are presented, and implications for binding to gp120 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号