首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate the existence of a broad class of higher-order rotating spatial solitons in nonlocal nonlinear media. We employ the generalized Hermite-Laguerre-Gaussian ansatz for constructing multivortex soliton solutions and study numerically their dynamics and stability. We discuss in detail the tripole soliton carrying two spiraling phase dislocations, or self-trapped optical vortices.  相似文献   

2.
3.
We study discrete vector solitons and vortices in two-dimensional photonic lattices with Kerr nonlinearity and demonstrate novel types of stable, incoherently coupled dipoles and vortex-soliton complexes that can be excited by Gaussian beams. We also discuss what we believe to be novel scenarios of the charge-flipping instability of incoherently coupled discrete vortices.  相似文献   

4.
We report on the first experimental observation of discrete vortex solitons in two-dimensional optically induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study the generation of the discrete vortices from a broad class of singular beams.  相似文献   

5.
We introduce a novel class of stable lattice solitons with a complex phase structure composed of many single-charge discrete vortices in a triangular photonic lattice. We demonstrate that such nonlinear self-trapped states are linked to the resonant Bloch modes, which bear a honeycomb pattern of phase dislocations.  相似文献   

6.
In the present work, we numerically explore the existence and stability properties of different types of configurations of dark-bright solitons, dark-bright soliton pairs and pairs of dark-bright and dark solitons in discrete settings, starting from the anti-continuum limit. We find that while single discrete dark-bright solitons have similar stability properties to discrete dark solitons, their pairs may only be stable if the bright components are in phase and are always unstable if the bright components are out of phase. Pairs of dark-bright solitons with dark ones have similar stability properties as individual dark or dark-bright ones. Lastly, we consider collisions between dark-bright solitons and between a dark-bright one and a dark one. Especially in the latter and in the regime where the underlying lattice structure matters, we find a wide range of potential dynamical outcomes depending on the initial soliton speed.  相似文献   

7.
It is known that optical-lattice (OL) potentials can stabilize solitons and solitary vortices against the critical collapse, generated by cubic attractive nonlinearity in the 2D geometry. We demonstrate that OLs can also stabilize various species of fundamental and vortical solitons against the supercritical collapse, driven by the double-attractive cubic-quintic nonlinearity (however, solitons remain unstable in the case of the pure quintic nonlinearity). Two types of OLs are considered, producing similar results: the 2D Kronig-Penney “checkerboard”, and the sinusoidal potential. Soliton families are obtained by means of a variational approximation, and as numerical solutions. The stability of all families, which include fundamental and multi-humped solitons, vortices of oblique and straight types, vortices built of quadrupoles, and supervortices, strictly obeys the Vakhitov-Kolokolov criterion. The model applies to optical media and BEC in “pancake” traps.  相似文献   

8.
The existence and dynamical properties of discrete solitons in inhomogeneous waveguide arrays with a Kerr nonlinearity are studied in two different configurations. First we investigate the effect of a longitudinal periodic modulation of the coupling strength on the dynamics of discrete solitons. It is shown that resonances of internal modes of the soliton with the longitudinal structure may lead to soliton oscillations and decay. Second we study the existence and stability of discrete solitons in arrays exhibiting a linear variation of the waveguide effective index in the transverse direction. We find that resonant coupling between conventional discrete solitons and linear Wannier-Stark states leads to the formation of so-called hybrid discrete solitons.  相似文献   

9.
In this paper, we consider the existence, stability and dynamical evolution of dark vortex states in the two-dimensional defocusing discrete nonlinear Schrödinger model, a model of interest both to atomic physics and to nonlinear optics. Our considerations are chiefly based on initializing such vortex configurations at the anti-continuum limit of zero coupling between adjacent sites, and continuing them to finite values of the coupling. Systematic tools are developed for such continuations based on amplitude-phase decompositions and explicit solvability conditions enforcing the vortex phase structure. Regarding the linear stability of such nonlinear waves, we find that in a way reminiscent of their 1d analogs, i.e., of discrete dark solitons, the discrete defocusing vortices become unstable past a critical coupling strength and, subsequently feature a cascade of alternating stabilization-destabilization windows for any finite lattice. Although the results are mainly geared towards the uniform case, we also consider the effect of harmonic trapping potentials often present in experimental atomic physics settings.  相似文献   

10.
B.Ya. Shapiro  I.B. Khalfin 《Physica A》1993,200(1-4):357-364
We have studied the vortex pinning in the large centers, i.e. in the spatial regions with the characteristic size a comparable with the London lenght λ. It is shown that the type of configuration and the number of vortices in the cluster are dependent on the ration a/λ and change nonmonotonically with the temperature. The influence of such vortex clusters on the decay of magnetization and the current-voltage characteristics are discussed. The important role of the potential barrier for the penetration of vortices into the pinning center is shown. The new state of vortex cluster, “vortex polaron”, is predicted. The stability of the multivortex state is discussed.  相似文献   

11.
In a benchmark dynamical-lattice model in three dimensions, the discrete nonlinear Schr?dinger equation, we find discrete vortex solitons with various values of the topological charge S. Stability regions for the vortices with S=0,1,3 are investigated. The S=2 vortex is unstable and may spontaneously rearranging into a stable one with S=3. In a two-component extension of the model, we find a novel class of stable structures, consisting of vortices in the different components, perpendicularly oriented to each other. Self-localized states of the proposed types can be observed experimentally in Bose-Einstein condensates trapped in optical lattices and in photonic crystals built of microresonators.  相似文献   

12.
We study self-localized second-band vortex states in two-dimensional photonic lattices and find stable ring solitons whose phase forms an array of counterrotating vortices. We also identify composite solitons in which a second-band vortex is jointly trapped with a mode arising from the first band and study their stability. When such a composite entity is unstable, it disintegrates while exchanging angular momentum between its constituents, eventually stabilizing into another form of composite soliton.  相似文献   

13.
The propagation of monochromatic radiation in a system of weakly coupled single-mode optical fibers with saturable amplification and absorption and Kerr nonlinearity of the refractive index is analyzed. Conditions of stability and bistability of plane-wave regimes are determined. Discrete dissipative optical solitons are found and their stability is studied. The hysteresis dependences of the peak intensity of the discrete solitons on the value of the Kerr nonlinearity and the input beam intensity are demonstrated. The numerical estimates of the parameters of the spatial dissipative discrete solitons are presented.  相似文献   

14.
We report on the first observation of topologically stable spatially localized multivortex solitons generated in optically induced hexagonal photonic lattices. We demonstrate that topological stabilization of such nonlinear localized states can be achieved through self-trapping of truncated two-dimensional Bloch waves and confirm our experimental results by numerical simulations of the beam propagation in weakly deformed lattice potentials in anisotropic photorefractive media.  相似文献   

15.
徐权  田强 《中国物理》2006,15(2):253-265
By virtue of the method of multiple-scale and the quasi-discreteness approach, we have discussed the nonlinear vibration equation of a 3D discrete monatomic lattice with its nearest-neighbours interaction. The 3D simple cubic lattices have the same localized modes as a 1D discrete monatomic chain with cubic and quartic nonlinearity. The nonlinear vibration in the 3D simple cubic lattice has 3D distorted solitons and 3D envelop solitons in the direction of $k_{x}=k_{y}=k_{z}=k$ and $k=\pm \pi$/6$a_{0}$ in the Brillouin zone, as well as has 3D vortices in the direction of $k_{x}=k_{y}=k_{z}=k$ and $k=\pm \pi$/$a_{0}$ in the Brillouin zone.  相似文献   

16.
In this paper, by solving a complex nonlinear Schr¨odinger equation, radially symmetric dissipative vortex solitons are obtained analytically and are tested numerically. We find that spatially inhomogeneous nonlinear absorption gives rise to the stability of dissipative vortex solitons in self-defocusing nonlinear medium in the presence of constant linear gain. Numerical simulation reveals the interaction effect among linear gain and nonlinear loss in the azimuthal modulation instabilities of these vortices suppression. Apart from the uniform linear gain indeed affects the stability of vortex in this media, another noticeable feature of current setup is that the steep spatial modulation of the nonlinear absorption can suppress sidelobes effectively and support stable vortex solitons in situations with uniform linear gain.Under appropriate conditions, the vortex solitons can propagate stably and feature no symmetry breaking, although the beams exhibit radical compression and amplification as they propagate.  相似文献   

17.
Light propagation in one-dimensional nonlinear waveguide arrays with self-defocusing intensity-resonant nonlinearity is investigated theoretically. We study thoroughly conditions for existence and stability of both gap and discrete dark solitons. According to the linear stability analysis both fundamental types (on-site and intersite) of gap solitons may be stable. Discrete dark solitons are unstable except in the low-power regime and, depending on system parameters, evolve into either gray solitons, breathers, or background radiation. Mobility of these solitons is analyzed by the free energy concept: gap solitons are immobile but dark solitons can be easily set in motion.  相似文献   

18.
《Physics Reports》2002,370(2):63-235
We present an overview of nonlinear phenomena related to optical quadratic solitons—intrinsically multi-component localized states of light, which can exist in media without inversion symmetry at the molecular level. Starting with presentation of a few derivation schemes of basic equations describing three-wave parametric wave mixing in diffractive and/or dispersive quadratic media, we discuss their continuous wave solutions and modulational instability phenomena, and then move to the classification and stability analysis of the parametric solitary waves. Not limiting ourselves to the simplest spatial and temporal quadratic solitons we also overview results related to the spatio-temporal solitons (light bullets), higher order quadratic solitons, solitons due to competing nonlinearities, dark solitons, gap solitons, cavity solitons and vortices. Special attention is paid to a comprehensive discussion of the recent experimental demonstrations of the parametric solitons including their interactions and switching. We also discuss connections of quadratic solitons with other types of solitons in optics and their interdisciplinary significance.  相似文献   

19.
We analyze discrete surface modes in semi-infinite binary waveguide arrays, which can support simultaneously two types of discrete solitons. We demonstrate that the analysis of linear surface states in such arrays provides important information about the existence of nonlinear surface modes and their properties. We find numerically the families of both discrete surface solitons and nonlinear Tamm (gap) states and study their stability properties.  相似文献   

20.
Lin YY  Lee RK 《Optics letters》2008,33(12):1377-1379
Elliptical solitons in 2D nonlinear Sch?dinger equations are studied numerically with a more-generalized formulation. New families of solitons, vortices, and soliton rings with elliptical symmetry are found and investigated. With a suitable symmetry-breaking parameter, we show that perturbed elliptical solitons tend to move transversely owing to the existences of dipole excitation modes, which are totally suppressed in circularly symmetric solitons. Furthermore, by numerical evolutions we demonstrate that elliptical vortices and soliton rings collapse into a pair of stripes and clusters, respectively, revealing the experimental observations in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号