首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the density functional theory and partitioning the molecular electron density ρ (r) into atomic electronic densities and bond electronic densities, the expressions of the total molecular energy and the “effective electronegativity” of an atom or a bond in a molecule are obtained. The atom-bond electronegativity equalization model is then proposed for the direct calculation of the total molecular energy and the charge distribution of large molecules. Practical calculations show that the atom-bond electronegativity equalization model can reproduce the correspondingab initio values of the total molecular energies and charge distributions for a series of large molecules with a very satisfactory accuracy.  相似文献   

2.
采用密度泛函理论(DFT)在B3LYP/6-311++G(d,p)基组水平上,计算了不同外加电场(-8.22×10~9~8.22×10~9 V/m)下甲醛分子基态稳定构型、分子键长、电荷分布、能级分布、能隙、红外光谱、拉曼光谱和分子的总能量.在此基础上利用TDDFT/B3LYP/6-311++G(d,p)方法研究了甲醛分子由基态跃迁到前25个激发态的激发能E、谐振强度f、吸收波长λ受外电场的影响.结果表明:随着C=O连线方向外电场的增加,C=O键键长、氢原子电荷、偶极矩和能隙递增;C—H键键长、C,O原子电荷递减,总能量降低.振动频率与红外强度及拉曼强度由于不同振动有不同变化.甲醛分子UV-Vis光谱随外电场的增加,不同的吸收峰发生了不同程度的蓝移或者红移;外电场对甲醛分子的激发能、谐振强度和吸收波长的强度有一定影响,但随电场变化比较复杂.  相似文献   

3.
The empirical valence bond (EVB) method [J. Chem. Phys. 52, 1262 (1970)] has always embodied charge transfer processes. The mechanism of that behavior is examined here and recast for use as a new empirical potential energy surface for large-scale simulations. A two-state model is explored. The main features of the model are: (1) explicit decomposition of the total system electron density is invoked; (2) the charge is defined through the density decomposition into constituent contributions; (3) the charge transfer behavior is controlled through the resonance energy matrix elements which cannot be ignored; and (4) a reference-state approach, similar in spirit to the EVB method, is used to define the resonance state energy contributions in terms of "knowable" quantities. With equal validity, the new potential energy can be expressed as a nonthermal ensemble average with a nonlinear but analytical charge dependence in the occupation number. Dissociation to neutral species for a gas-phase process is preserved. A variant of constrained search density functional theory is advocated as the preferred way to define an energy for a given charge.  相似文献   

4.
The structure and energy of formation of the hydrogen bonded complex HFHCN are predicted by ab initio molecular orbital methods. The charge redistribution upon dimer formation is examined in this complex and related to those charge distributions found in other H-bonded complexes. The total hydrogen bond energy is broken down into components as well as related to experimental work on similar compounds.  相似文献   

5.
6.
A structure that can self‐heal under standard conditions is a challenge faced nowadays and is one of the most promising areas in smart materials science. This can be achieved by dynamic bonds, of which diarylbibenzofuranone (DABBF) dynamic covalent bond is an appealing solution. In this report, we studied the DABBF bond formation against arylbenzofuranone (ABF) and O2 reaction (autoxidation). Our results show that the barrierless DABBF bond formation is preferred over autoxidation due to the charge transfer process that results in the weakly bonded superoxide. We calculated the electronic and structural properties using total energy density functional theory. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
Experimental charge density distributions in a series of ionic complexes of 1,8-bis(dimethylamino)naphthalene (DMAN) with four different acids: 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), 4,5-dichlorophthalic acid, dicyanoimidazole, and o-benzoic sulfimide dihydrate (saccharin) have been analyzed. Variation of charge density properties and derived local energy densities are investigated, over all inter- and intramolecular interactions present in altogether five complexes of DMAN. All the interactions studied [[O...H...O](-), C[bond]H...O, [N[bond]H...N](+), O[bond]H...O, C[bond]H...N, C pi...N pi, C pi...C pi, C[bond]H...Cl, N[bond]H(+)] follow exponential dependences of the electron density, local kinetic and potential energies at the bond critical points on the length of the interaction line. The local potential energy density at the bond critical points has a near-linear relationship to the electron density. There is also a Morse-like dependence of the laplacian of rho on the length of interaction line, which allows a differentiation of ionic and covalent bond characters. The strength of the interactions studied varies systematically with the relative penetration of the critical points into the van der Waals spheres of the donor and acceptor atoms, as well as on the interpenetration of the van der Waals spheres themselves. The strong, charge supported hydrogen bond in the DMANH(+) cation in each complex has a multicenter character involving a [[Me(2)N[bond]H....NMe(2)](+)....X(delta-)] assembly, where X is the nearest electronegative atom in the crystal lattice.  相似文献   

8.
In the present work, the distribution of the electronic charge density in the ethene protonation reaction by a zeolite acid site is studied within the framework of the density functional theory and the atoms in molecules (AIM) theory. The key electronic effects such as topological distribution of the charge density involved in the reaction are presented and discussed. The results are obtained at B3LYP/6-31G(**) level theory. Attention is focused on topological parameters such as electron density, its Laplacian, kinetic energy density, potential energy density, and electronic energy density at the bond critical points (BCP) in all bonds involved in the interaction zone, in the reactants, pi-complex, transition state, and alkoxy product. In addition, the topological atomic properties are determined on the selected atoms in the course of the reaction (average electron population, N(Omega), atomic net charge, q(Omega), atomic energy, E(Omega), atomic volume, v(Omega), and first moment of the atomic charge distribution, M(Omega)) and their changes are analyzed exhaustively. The topological study clearly shows that the ethene interaction with the acid site of the zeolite cluster, T5-OH, in the ethene adsorbed, is dominated by a strong O-H...pi interaction with some degree of covalence. AIM analysis based on DFT calculation for the transition state (TS) shows that the hydrogen atom from the acid site in the zeolitic fragment is connected to the carbon atom by a covalent bond with some contribution of electrostatic interaction and to the oxygen atom by closed shell interaction with some contribution of covalent character. The C-O bond formed in the alkoxy product can be defined as a weaker shared interaction. Our results show that in the transition state, the dominant interactions are partially electrostatic and partially covalent in nature, in which the covalent contribution increases as the concentration and accumulation of the charge density along the bond path between the nuclei linked increases.  相似文献   

9.
Our curiosity-driven desire to “see” chemical bonds dates back at least one-hundred years, perhaps to antiquity. Sweeping improvements in the accuracy of measured and predicted electron charge densities, alongside our largely bondcentric understanding of molecules and materials, heighten this desire with means and significance. Here we present a method for analyzing chemical bonds and their energy distributions in a two-dimensional projected space called the condensed charge density. Bond “silhouettes” in the condensed charge density can be reverse-projected to reveal precise three-dimensional bonding regions we call bond bundles. We show that delocalized metallic bonds and organic covalent bonds alike can be objectively analyzed, the formation of bonds observed, and that the crystallographic structure of simple metals can be rationalized in terms of bond bundle structure. Our method also reproduces the expected results of organic chemistry, enabling the recontextualization of existing bond models from a charge density perspective.  相似文献   

10.
The charge distribution of taurine (2-aminoethane-sulfonic acid) is revisited by using an orbital-based method that describes the density in a fixed molecular orbital basis with variable orbital occupation numbers. A new neutron data set is also employed to explore whether this improves the deconvolution of thermal motion and charge density. A range of molecular properties that are novel for experimentally determined charge densities are computed, including Weinhold population analysis, Mayer bond orders, and local kinetic energy densities, in addition to charge topological analysis and quantum theory of atoms-in-molecules (QTAIM) integrated properties. The ease with which a distributed multipole analysis can be performed on the fitted density matrix makes it straightforward to compute molecular moments, the lattice energy, and the electrostatic interaction energies of molecules removed from the crystal. Results are compared with high-level (QCISD) gas-phase calculations and band structure calculations employing density functional theory. Finally, the avenues available for extending the range of molecular properties that can be calculated from experimental charge densities still further using this approach are discussed.  相似文献   

11.
The total charge density distribution rho(r) of the colossal magnetoresistive transition metal sulfide FeCr(2)S(4) was evaluated through a multipole formalism from a set of structure factors obtained both experimentally, by means of single crystal high-quality x-ray diffraction data collected at T=23 K, and theoretically, with an extended-basis unrestricted Hartree-Fock periodic calculation on the experimental geometry. A full topological analysis, followed by the calculation of local energy density values and net atomic charges, was performed using the quantum theory of atoms in molecules. The experimental and theoretical results were compared. Good agreement was found for the topological properties of the system, as well as for the atomic net charges and the nature of the chemical bonds. An analysis of the electron density rho(r), its Laplacian nabla(2)[rho(r)], and the total energy density H(r) at the bond critical points was employed to classify all the interactions that resulted as predominantly closed shell (ionic) in nature. The topological indicators of the bonded interactions for Fe are distinct from those for Cr. The Fe-S bond distances were found to be 0.145 A shorter than the ideal values computed on the basis of Shannon's crystal radii, much shorter than the Cr-S distances with respect to their ideal Shannon lengths. Concomitantly, rho(r) and |H(r)| at the bond critical points are greater for Fe-S interactions, indicating that the local concentration of charge density in the internuclear region is larger for the tetrahedrally coordinated iron than for the octahedrally coordinated chromium. The isosurface in the real space for nabla(2)[rho(r)]=0 was plotted for both iron and chromium, pointing out the local zones of valence shell charge concentration and relating them to the partial d-orbital occupancy of the two transition metal atoms.  相似文献   

12.
The charge density of Co2(CO)6(HC[triple bond]CC6H10OH) (1) in the crystalline state has been determined using multipolar refinement of single-crystal X-ray diffraction data collected (i) with a synchrotron source at very low temperatures (15 K) and (ii) using a conventional source with the crystal at intermediate temperature (100 K). The X-ray charge density model is augmented by complete active space and density functional theory calculations. Topological analyses of the different charge distributions show that the two Co atoms are not bonded to each other in the quantum theory of atoms in molecules (QTAIM) sense of the word. However, the behavior of the source function and the total energy density indicate that there is some bond-like character in the Co-Co interaction. The bridging alkyne fragment provides an unusual bonding situation, with extremely small electron density differences between the two Co-C bond critical points and the "CoC2" ring critical point. Thus, the structure is close to a topological catastrophe point. Comparison of the results obtained from the two diffraction data sets and ab initio theory suggests that the topology of the experimental electron density in this special atomic environment is highly sensitive to subtle effects of measurement errors and potential shortcomings of the multipole model, or to effects of the crystal field. Thus, even the two identical molecules in the asymmetric unit show altered bonding patterns.  相似文献   

13.
14.
The analysis of interrelation between halogen bond and hydrogen bond in the (RX)(HNC)(HCN) complexes (R = CH3, CF3 and X = Cl, Br, I) was performed on the basis of DFT calculations. Both two‐body additive contributions and three‐body nonadditive contributions to the total interaction energy were discussed. QTAIM was used for topological analysis of electron density. Additionally, QTAIM analysis of electron density was performed for both two‐ and three‐body complexes. The electron charge transfer in trimers showed the dual character of the fragment with halogen atom involved into the investigated interactions—it acts as Lewis acid and Lewis base, depending on the type of interaction considered. The effect of cooperativity of X‐ and H‐bonding was assessed on the basis of many‐body interaction energy and electron density analysis. Additionally, an alternative two‐body model with the same situation (in the context of intermolecular interactions) is investigated. The anti‐cooperative effect was found also for this model.  相似文献   

15.
Self-consistent correlation potentials for H(2) and LiH for various inter-atomic separations are obtained within the random phase approximation (RPA) of density functional theory. The RPA correlation potential shows a peak at the bond midpoint, which is an exact feature of the true correlation potential, but lacks another exact feature: the step important to preserve integer charge on the atomic fragments in the dissociation limit. An analysis of the RPA energy functional in terms of fractional charge is given which confirms these observations. We find that the RPA misses the derivative discontinuity at odd integer particle numbers but explicitly eliminates the fractional spin error in the exact-exchange functional. The latter finding explains the improved total energy in the dissociation limit.  相似文献   

16.
A high‐level ab initio Hartree‐Fock/Møller‐Plesset 2 and density functional theory quantum chemical calculations were performed on p‐chlorobenzaldehyde diperoxide energetic molecule to understand its bond topological, electrostatic, and energetic properties. The optimized molecular geometry for the basis set 6‐311G** exhibit chair diperoxide ring and planar aromatic side rings. Although the diperoxide ring bear same type of side rings, surprisingly, both the rings are almost perpendicular to each other, and the dihedral angle is 96.1°. The MP2 method predicts the O? O bond distance as ~1.466 Å. The charge density calculation reveals that the C? C bonds of chlorobenzaldehyde ring have rich electron density and the value is ~2.14 e Å?3. The maximum electron density of the O? O bonds does not lie along the internuclear axes; in view of this, a feeble density is noticed in the ring plane. The high negative values of laplacian of C? C bonds (approximately ?22.4 e Å?5) indicate the solidarity of these bonds, whereas it is found too small (approximately ?1.8 e Å?5 for MP2 calculation) in O? O bonds that shows the existence of high degree of bond charge depletion. The energy density in all the C? C bonds are found to be uniform. A high electronegative potential region is found at the diperoxide ring which is expected to be a nucleophilic attack area. Among the bonds, the O? O bond charge is highly depleted and it also has high bond kinetic energy density; in consequence of this, the molecular cleavage is expected to happen across these bonds when the material expose to any external stimuli such as heat or pressure treatment. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

17.
Electrode poisoning by CO is a major concern in fuel cells. As interest in applying computational methods to electrochemistry is increasing, it is important to understand the levels of theory required for reliable treatments of metal-CO interactions. In this paper we justify the use of relativistic effective core potentials for the treatment of PdCO and hence, by inference, for metal-CO interactions where the predominant bonding mechanism is charge transfer. We also sort out key issues involving basis sets and we recommend that bond energies of 17.2, 43.3, and 69.4 kcal/mol be used as the benchmark bond energy for dissociation of Pd2 into Pd atoms, PdCO into Pd and CO, and Pd2CO into Pd2 and CO, respectively. We calculated the dipole moments of PdCO and Pd2CO, and we recommend benchmark values of 2.49 and 2.81 D, respectively. Furthermore, we tested 27 density functionals for this system and found that only hybrid density functionals can qualitatively and quantitatively predict the nature of the sigma-donation/pi-back-donation mechanism that is associated with the Pd-CO and Pd2-CO bonds. The most accurate density functionals for the systems tested in this paper are O3LYP, OLYP, PW6B95, and PBEh.  相似文献   

18.
《Chemical physics letters》1987,140(2):120-123
The electronic structure of corundum (α-Al2O3) is calculated at the ab initio Hartree-Fock level. Cohesive energy, total and projected densities of states, atomic multipoles, bond populations and electron charge density distribution maps are given. The oxygen-aluminium bond is found to be partially covalent in nature; the atomic charges are −0.73 e and +1.09 e for O and Al respectively.  相似文献   

19.
Chemisorption of alkanethiols on As-rich GaAs (001) surface under a low coverage condition was studied using first principles density functional calculations in a periodic supercell approach. The thiolate adsorption site, tilt angle and its direction are dictated by the high directionality of As dangling bond and sulfur 3p orbital participating in bonding and steric repulsion of the first three CH2 units from the surface. Small charge transfer between thiolate and surface, strong dependence of total energy on tilt angle, and a relatively short length of 2.28 A of the S-As bond indicate the highly covalent nature of the bonding. Calculated binding energy of 2.1 eV is consistent with the available experimental data.  相似文献   

20.
We have performed a quantum‐mechanical study of a series of neutral polyenes, their multiply charged ions, and related ionic polymethines with a closed electron shell, using different methods/basis with/without electron correlations. The study shows that a multiple injection of charge carriers into a collective system of π‐electrons causes a formation of distinctive electron levels in the energy gap along with a simultaneous regular gap shift in accordance to the number of injected carriers. Each charge generates its own solitonic electron density alternation wave on adjacent carbon atoms, as well as similar bond length and valence angle alternation waves. Established regularities in charge distribution and variations of bond lengths and valence angles may be used in the molecular design of organic semiconducting materials. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号