首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Epitaxially grown GaAs(001), (111) and (1?1?1?) surfaces and their behaviour on Cs adsorption are studied by LEED, AES and photoemission. Upon heat treatment the clean GaAs(001) surface shows all the structures of the As-stabilized to the Ga-stabilized surface. By careful annealing it is also possible to obtain the As-stabilized surface from the Ga-stabilized surface, which must be due to the diffusion of As from the bulk to the surface. The As-stabilized surface can be recovered from the Ga-stabilized surface by treating the surface at 400°C in an AsH3 atmosphere. The Cs coverage of all these surfaces is linear with the dosage and shows a sharp breakpoint at 5.3 × 1014 atoms cm?2. The photoemission reaches a maximum precisely at the dosage of this break point for the GaAs(001) and GaAs(1?1?1?) surface, whereas for the GaAs(111) surface the maximum in the photoemission is reached at a higher dosage of 6.5 × 1014 atoms cm?2. The maximum photoemission from all surfaces is in the order of 50μA Im?1 for white light (T = 2850 K). LEED measurements show that Cs adsorbs as an amorphous layer on these surfaces at room temperature. Heat treatment of the Cs-activated GaAs (001) surface shows a stability region of 4.7 × 1014 atoms cm?2 at 260dgC and one of 2.7 × 1014 atoms cm?2 at 340°C without any ordering of the Cs atoms. Heat treatment of the Cs-activated GaAs(111) crystal shows a gradual desorption of Cs up to a coverage of 1 × 1014 atoms cm?2, which is stable at 360°C and where LEED shows the formation of the GaAs(111) (√7 × √7)Cs structure. Heat treatment of the Cs-activated GaAs(1?1?1?) crystal shows a stability region at 260°C with a coverage of 3.8 × 1014 atoms cm?2 with ordering of the Cs atoms in a GaAs(1?1?1?) (4 × 4)Cs structure and at 340°C a further stability region with a coverage of 1 × 1014 at cm?2 with the formation of a GaAs(1?1?1?) (√21 × √21)Cs structure. Possible models of the GaAs(1?1?1?) (4 × 4)Cs, GaAs(1?1?1?)(√21 × √21)Cs and GaAs(111) (√7 × √7)Cs structures are given.  相似文献   

2.
A combination of low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) has been used to study the formation of the negative electron affinity (NEA) condition on surfaces of p-type, degenerate, (100) and (111) GaAs. Activation to NEA is achieved by adsorbing Cs and O onto atomically clean GaAs in repetitive cycles of first Cs and then O. Before activation, the clean GaAs surfaces exhibit their characteristic LEED patterns. However, once obtained, there is no significant correlation between the quality of these LEED patterns and the final activation. The adsorption of both Cs and O during activation to NEA is amorphous. Auger measurements have shown that the first photoemission maximum occurs after the adsorption of about a half monolayer of Cs. The initial O adsorption occurs on the GaAs surface between the Cs atoms. The adsorbed O interacts strongly with Cs at any stage during the activation. Peak photosensitivities, after completion of the Cs and O adsorptions, were in the range 400 to 1100 μAlumen. The final activation does not correlate with the quantity of Cs and O on the surface. The temperature dependence of the photosensitivity of NEA GaAs (100) activated at ?170°C has a broad maximum at about ?50°C and a subsidiary maximum at about 160°C. In addition, the photoemission at ?170°C can be either increased or decreased by having heated the sample up to 200°C, even though no Cs or O desorption has taken place. These results can be traced to changes in work function rather than to changes in bulk properties. While the LEED patterns from clean GaAs show no structural changes with temperature, such changes are observed when Cs is on the surface. It is suggested that changes both in photoemission and in LEED patterns are due to the temperature-induced mobility of Cs on GaAs. An atomic model for the NEA surface is discussed in terms of a layer of Cs and O atoms about 10 Å thick on the GaAs.  相似文献   

3.
The adsorption of CO on Rh(111) has been studied by thermal desorption mass spectrometry and low-energy electron diffraction (LEED). At temperatures below 180 K, CO adsorbs via a mobile precursor mechanism with sticking coefficient near unity. The activation energy for first-order CO desorption is 31.6 kcal/mole (νd = 1013.6s?1) in the limit of zero coverage.As CO coverage increases, a (√3 ×√3)R30u overlayer is produced and then destroyed with subsequent formation of an overlayer yielding a (2 × 2) LEED pattern in the full coverage limit. These LEED observations allow the absolute assignment of the full CO coverage as 0.75 CO molecules per surface Rh atom. The limiting LEED behavior suggests that at full CO coverage two CO binding states are present together.  相似文献   

4.
GaAs (100)-(1X1) surface grown by molecular-beam epitaxy was studied by low energy electron diffraction (LEED). Intensities of diffraction spots were measured in the energy range of (40-300) eV and analysed using dynamical tensor LEED package. Relaxation of surface layers decreased the Pendry's R-factor to 0.48. Analysis of the LEED intensity-voltage curves for the normal electron incidence shows that the investigated surface structure is more complicated than a simply relaxed ideal surface.  相似文献   

5.
《Surface science》1986,172(1):174-182
The room temperature adsorption of CF3COOH, CH3COOH and CO on cleaved GaAs(110) surfaces has been studied by vibrational electron energy loss spectroscopy (HRELS), second derivative electron energy spectroscopy (ELS) and electron diffraction (LEED). CO does not adsorb on the GaAs surfaces in measurable quantities. Acetic acid CH3COOH is dissociatively adsorbed as an acetate bonded to Ga surface atoms with the split-off hydrogen on As surface atoms. The fluorated acid CF3COOH decomposes via an acetate intermediate CF3COO into active CF3 groups which adsorb on Ga surface atoms. The split-off hydrogen sticks to surface As atoms while the generated CO2 desorbs. The adsorption models are consistent with the LEED c(2×2) superstructure observed after saturated adsorption of both acids.  相似文献   

6.
W Mokwa  D Kohl  G Heiland 《Surface science》1984,139(1):98-108
The UHV cleaved (110) face has been exposed to water in the range from 10 L to 2 × 104 L. The main TDS peak in H2O desorption appears at 350 K, independent of coverage. The low desorption energy of 0.7 eV (16 kcal/mol) is reasonable for oxygen atoms bound via the lone pair orbital to As as was earlier derived from UPS measurements. A broad spur between 450 and 600 K may be related to O-Ga bonds. The sticking probability shows values below 10-4; only near 4.8 × 103 L (6 × 1015 cm-2 s-1 H2O molecules for 300 s) corresponding to a coverage of about 0.4 monolayes a steep maximum appears. At about one monolayer saturation is observed. Exposures to more than 104 L of water quench the intensity of the (10) LEED spot considerably stronger than the intensity of the (11) spot. A comparison of the I(E) curves with existing model calculations suggests that the observed behaviour of the LEED spots is caused by a change in surface structure towards the unrelaxed configuration. The higher sticking coefficient observed near 0.4 monolayers may be connected with this rearrangement of surface atoms.  相似文献   

7.
The system Cu(210)-O2 has been examined using LEED and AES, combined with optical simulation of diffraction patterns to investigate the detailed structure of the adsorbed layer. Exposure at 300 K and 5 × 10?9 Torr resulted in LEED patterns showing pronounced streaks. The corresponding structures are believed to require an adsorption mechanism in which O2 dissociation can occur only at a limited number of surface sites and in which O atoms after dissociation diffuse over quite large distances (?10 nm) before becoming chemisorbed. Heating these structures to 500–600 K produced a sharp (2 × 1) pattern; this step is thought to involve equilibration of the adsorbed layer. Further combinations of exposure (?1 × 10?6Torr) and heating (up to 500 K) resulted in a series of (2 × 1) and (3 × 1) patterns, while heating to 800 K at any stage of the oxygen interaction regenerated the clean surface.  相似文献   

8.
本文以反射式高能电子衍射(RHEED)和其强度振荡为监测手段,在半绝缘GaAs衬底上成功地生长GaSb/AlSb/GaAs应变层结构,RHEED图样表明,GaSb正常生长时为Sb稳定的C(2×6)结构,AlSb为稳定的(1×3)结构,作者观察并记录GaSb,AlSb生长时的RHEED强度振荡,并利用它成功地生长10个周期的GaSb/AlSb超晶格,透射电子显微镜照片显示界面平整、清晰,采用较厚的AlSb过渡层及适当的生长条件,可在半绝缘GaAs衬底上生长出质量好的GaSb外延层,其X射线双晶衍射半峰宽小于 关键词:  相似文献   

9.
D. Kato  T. Matsui  J. Yuhara 《Surface science》2010,604(15-16):1283-1286
The oxidation of submonolayer zinc films on Rh(100) surface by O2 gas has been studied using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and scanning tunneling microscopy (STM). With a zinc coverage of 0.8 ML, an atomically flat ultra-thin zinc oxide film formed at an oxygen partial pressure of 2 × 10? 8 mbar and a temperature of 150 °C. The zinc oxide film showed a c(16 × 2) LEED pattern. The high resolution STM image of the zinc oxide film showed single dotted spots and double dotted spots arranged linearly and periodically along the [01¯1] direction. We propose an atomic arrangement model of the film accounting for the LEED pattern, the STM image, and the atomic arrangement of the bulk ZnO(0001) surface.  相似文献   

10.
Two newly discovered phases on the Pt(100) surface produced by the adsorption of oxygen have been investigated using Rutherford baekscattering (RBS), nuclear microanalysis (NMA), work function changes (Δφ) and LEED. One phase is associated with the oxygensaturated surface (0.63 ± 0.03 monolayers0.81 × 1015 O atoms cm?2), where a very complex LEED pattern is observed; the other is observed at an average coverage of 0.44 ± 0.05 monolayers and gives rise to a (3 × 1) LEED pattern (when observed at room temperature). For both surfaces, RBS measurements indicate large (? 0.025 nm) Pt atom displacements. Also discussed is a new method for preparing the “clean” (1 × 1)-Pt(100) surface without the need for NO adsorption/decomposition.  相似文献   

11.
The initial oxidation of Mg(0001) has been studied using AES (Auger electron spectroscopy), LEED (low energy electron diffraction), and EELS (electron energy loss spectroscopy). The oxidation proceeds through different stages; first oxygen atoms are incorporated to chemisorption sites below the top layer magnesium. This chemisorption phase is followed by the formation of an oxide layer. The oxide layer covers the Mg surface after an oxygen exposure of ~ 10 L O2. After this exposure the bulk-like MgO formation slowly increases the oxide thickness. The oxide layer formed for exposures up to ≤ 10 L O2 gives rise to a diffuse LEED pattern of the same symmetry as the original “clean” LEED pattern; the possibility of an epitaxial oxide formation at this stage is discussed.  相似文献   

12.
The adsorption of Xe and CO on Ag(111) in the range 66 to 123 K and 10?7 to 10?1 Pa has been studied by surface potential, low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and electron energy loss spectroscopic (EELS) measurements. Isotherms derived from both surface potential and AES measurements for submonolayer Xe adsorption reveal successive stages and a two-dimensional phase change. Isosteric heats were 18 ± 1 kJ mol?1. Temkin isotherms were observed for CO, the heat falling linearly with coverage from an initial value of 27 ± 1.5 kj mol?1. No ordered CO overlayer structure could be detected. EEL spectra of clean Ag(111) agree with previous studies. Additional loss peaks were recorded for Xe and CO overlayers, and the assignment of the substrate loss features is discussed in relation to the effects of adsorption.  相似文献   

13.
《Surface science》1996,366(1):99-106
Electron-stimulated desorption ion angular distribution (ESDIAD) and LEED were used to investigate the structure changes at the TiO2(100) surface. The angular distribution of O+ ions from the (1 × 3) reconstructed surface is consistent with the microfacet model proposed from X-ray diffraction and STM studies. The (1 × 3) reconstructed surface can be transferred back to the (1 × 1) surface after annealing at 950 K in oxygen, through a stage where the surface consists of (1 × 1) and (1 × 3) domains which are smaller than the coherent width of the LEED electron beam. Evidence for surface reconstruction on the (1 × 1) surface is also found.  相似文献   

14.
Analytical electron microscopy, high-resolution X-ray diffraction and combined Rutherford backscattering spectrometry and channeling experiments have been used to investigate the radiation damage and the effect of post-implantation annealing on the microstructure of GaAs(100) single crystals implanted with 1.00 MeV Cu+ ions to a dose of ≈ 3×1016 cm-2 at room temperature. The experiments reveal the formation of a thick and continuous amorphous layer in the as-implanted state. Annealing up to 600 °C for 60 min does not result in the complete recovery of the lattice order. The residual disorder in GaAs has been found to be mostly microtwins and stacking fault bundles. The redistribution of implanted atoms during annealing results in the formation of nano-sized Cu particles in the GaAs matrix. The X-ray diffraction result shows a cube-on-cube orientation of the Cu particles with the GaAs lattice. The depth distribution and size of the Cu particles have been determined from the experimental data. A tentative explanation for these results is presented. Received: 15 February 1999 / Accepted: 18 February 1999 / Published online: 28 April 1999  相似文献   

15.
Both Photoemission Yield Spectroscopy (PYS) and Auger Electron Spectroscopy (AES) have been used in the study of the electronic properties of the clean GaAs(100) surface prepared by IBA procedure and subsequently exposed to oxygen. For the clean GaAs(100)c(8 × 2) surface, the values of the work function and the absolute band bending were 4.20 ± 0.02 eV and −0.23 ± 0.06 eV, respectively, which confirms the pinning of the Fermi level EF, and two filled electronic surface state bands localized in the band gap below the Fermi level were observed. After exposition of this surface to 103 L of oxygen, the electronic surface state band localized just below the Fermi level EF disappeared, and the work function and the absolute band bending increased by only 0.12eV, whereas for the higher oxygen exposures of 104L and 105L, only small increases in the values of the work function and the absolute bending by 0.04 eV and 0.03 eV, respectively, were observed.  相似文献   

16.
利用低能电子衍射(LEED)、X射线光电子能谱(XPS)、电子能量损失谱(EELS)、紫外光电子能谱(UPS),对室温下Mn在GaAs(100)4×1表面的淀积过程进行了研究。研究结果表明,当锰的覆盖度θ≥0.25nm时,LEED图案完全消失,表明Mn没有生长成单晶。LEED,EELS的结果都表明淀积初期是层状生长的。对XPS的Ga2p3/2,As2p3/2的峰形、强度进行分析,可以知道在很小的覆盖度下,Mn就与衬底反应。置换出的Ga被局限在离原来的界面约3nm 关键词:  相似文献   

17.
《Surface science》1986,171(1):L425-L431
The surface oxidation of epitaxial and polycrystalline Gd samples grown in ultrahigh vacuum on W(110) substrates has been investigated using Auger-electron spectroscopy (AES) and low energy electron diffraction (LEED). The surface crystallography of clean epitaxial films monitored by LEED is hcp(0001) and remains unchanged even after 300 L oxygen exposure at room temperature. The LEED pattern of bulk Gd2O3 in Mn2O3 structure is observed only when oxygen is exposed at an elevated substrate temperature of about 500°C. AES clearly reveals various stages of oxidation as a function of the oxygen exposure for epitaxial as well as polycrystalline films. It is found that the oxidation does not proceed beyond one monolayer of the Gd surface.  相似文献   

18.
We report experimental results of the characterization of an N+GaAs photodetector irradiated by fast neutrons with flux up to doses of 4×1017 n/cm2 using a constructed electro-optic sampling system and illumination with 80-fs-wide laser pulses. The investigated N+GaAs sample was compared with the same non-irradiated sample. The device shows a response time of 680 fs full width at half maximum (648 GHz, 3-dB bandwidth) with a voltage amplitude of 3.1 mV. Changes in the shape of the electrical signal for different beam power excitations and bias voltages have been demonstrated. Using X-ray diffraction and diffuse scattering analyses, we have observed a decrease of the lattice constant and an almost three times decreased radius of nanoclusters; the density dislocations increased by over four times after neutron irradiation.  相似文献   

19.
LEED, AES, UPS and XPS were used to study submonolayer coverages of potassium on Fe(110). At room temperature the maximum potassium coverage is characterized by a LEED superstructure. This LEED pattern is interpreted as being due to a hexagonal close-packed K layer on Fe(110), resulting in a maximum atom density of 5.3 × 1014 cm?2, i.e.θ k = 0.31. The work function change and the shift of the K(2p) and K(3p) core levels with potassium coverage indicate a charge transfer from potassium to iron at low potassium coverages.  相似文献   

20.
The effect of the surface preparation of the GaAs(110) substrate on the ZnSe epitaxial layer grown by molecular beam epitaxy (MBE) was investigated by means of etch-pit density (EPD) measurements, surface morphology observation, and reflection high-energy electron diffraction (RHEED) analysis. The ZnSe epitaxial layer grown on a GaAs(110) surface prepared by cleaving the (001)-oriented wafer in ultrahigh vacuum (UHV) showed about 5×104 cm-2 of EPD. This value is much lower than that observed from both the samples grown on the mechanically polished surface with and without a GaAs buffer layer. Due to the non-stoichiometric surface after thermal evaporation of the surface oxide, three-dimensional growth can easily occur on the mechanically polished GaAs(110) substrate. These results suggest that the stoichiometric and atomically flat substrate surface is essential for the growth of low-defect ZnSe epitaxial layers on the GaAs(110) non-polar surface. Received: 21 August 1998 / Accepted: 19 October 1998 / Published online: 28 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号