首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chemisorption of H2, O2, CO, CO2, NO, C2H4, C2H2 and C has been studied on the clean Rh(111) and (100) surfaces. LEED, AES and thermal desorption were used to determine the surface structures, disordering and desorption temperatures, displacement and decomposition characteristics for each species. All of the molecules studied readily chemisorbed on both surfaces. A large variety of ordered structures was observed, especially on the (111) surface. The disordering temperatures of most ordered surface structures on the (111) surface were below 100°C. It was necessary to adsorb the gases at 25° C or below in order to obtain well-ordered surface structures. Chemisorbed oxygen was readily removed from the surface by H2 or CO gas at crystal temperatures above 50°C. CO2 appears to dissociate to CO upon adsorption on both rhodium surfaces as indicated by the identical ordering and desorption characteristics of these two molecules. C2H4 and C2H2 also had very similar ordering and desorption characteristics and it is likely that the adsorbed species formed by both molecules is the same. Decomposition of ethylene produced a sequence of ordered carbon surface structures on the (111) face as a result of a bulk-surface carbon equilibrium. The chemisorption properties of rhodium appear to be generally similar to those of iridium, nickel and palladium.  相似文献   

2.
The chemisorption of small molecules (CO, CO2, C2H2, C2H4, H2 and NH3) has been studied on the clean Fe(110) and (111) crystal faces by low-energy electron diffraction (LEED) and thermal desorption. C2H4 and C2H2 yield the same sequence of surface structures that change with temperature and crystal orientation. CO and CO2 chemisorption similarly results in the formation of the same types of surface structures that change with surface temperature and crystal orientation. Ammonia forms several ordered surface structures on both iron crystal faces. All of the molecules decompose as a function of temperature on the iron surfaces as indicated by the Auger and thermal desorption spectra.  相似文献   

3.
The adsorption of hydrogen, ethylene, acetylene, cyclohexane and benzene was studied on both the (111) and stepped [6(111) × (100)] crystal surfaces of iridium. The techniques used were low energy electron diffraction, Auger electron spectroscopy, and thermal desorption mass spectrometry. At 30°C, acetylene, ethylene and benzene are adsorbed with a sticking probability near unity. The sticking probability of cyclohexane is less than 0.1 on both surfaces. Heating the (111) surface above 800°C, in the presence of the hydrocarbons, results in the formation of an ordered carbonaceous overlayer with a diffraction pattern corresponding to a (9 × 9) surface structure. No indication for ordering of the carbonaceous residue was found on the stepped iridium surface in these experimental conditions. The hydrocarbon molecules form only poorly ordered surface structures on both iridium surfaces when the adsorption is carried out at 30°C. Benzene is the only gas that can be desorbed from the surfaces in large amounts by heating. Ethylene remains largely on the surface, only a few percent is removed by heating while acetylene and cyclohexane cannot be desorbed at all. When adsorption is carried out at 30°C and the crystal is subsequently flashed to high temperature, hydrogen is liberated from the surface. The hydrogen desorption spectra from the iridium surfaces exposed to C2H4, C2H2, or C6H6 exhibit two hydrogen desorption peaks, one around 200°C and the second around 350°C. The temperatures where these peaks appear vary slightly with the type of hydrocarbon. The relative intensities of these two peaks depend strongly on the surface used. Arguments are presented that decomposition of the hydrocarbon molecules (C-H bond breaking nd possibly also C-C bond breaking) occurs easier on the stepped iridium surface than on the (111) surface. Hydrogen is desorbed at a higher temperature from an iridium surface possessing a high density of surface imperfections than from a perfect iridium (111) surface. The results are compared with those obtained previously on similar crystal surfaces of platinum. It appears that C-H bond breaking occurs more easily on iridium than on platinum.  相似文献   

4.
A comparative study of the adsorption of several gases on a Pt(S)-[9(111) × (111)] surface was performed using LEED, Auger spectroscopy, flash desorption mass spectrometry and work function changes as surface sensitive techniques. Adsorption was found to be generally less ordered on the stepped surface than on the corresponding flat surface with the exception of the oxygen, where r well ordered overlayer in registry over many terraces was found. Absolute coverages were determined from flash desorption experiments for O2, CO and C2N2. Similar values were obtained as on flat Pt surfaces. Two different surface species seem to be formed upon adsorption of C2H4 depending on the adsorption temperature. Contrary to reports from Pt(111) surfaces conversion between the two surface species is heavily restricted on the stepped surface. Work function changes revealed nonlinear adsorbate effects where the adsorbate is electronegative with respect to the substrate. Various adsorption models are discussed in the light of complementary experimental evidence. The results of this study are compared with data available from flat Pt surfaces and possible influences of steps are discussed. No general trends, however, emerge from this comparison and it seems that eventual influences of steps have to be considered individually for every adsorbate.  相似文献   

5.
Using Thermal Programmed Desorption (TPD), Low Energy Electron Diffraction (LEED) and Auger Electron Spectroscopy (AES) we have studied the adsorption of hydrogen-containing molecules (H2, C2H2, C2H4, C2H6) and oxygen-containing molecules (CO and NO) on two vicinal planes of the Re(0001) surface. The two surfaces are designated thus: ReS ¦14(0001)(101̄1)¦, ReS |6(0001)(167̄1) | . The structural defects have little effect on the adsorption of hydrogen and the hydrocarbons. They are more influential in the case of the oxygen-containing molecules. This is particularly true for CO; on the kink sites the CO molecules can completely dissociate whereas only a partial dissociation is possible on the steps. These results should be viewed in relation to the strong bond energy between carbon and oxygen in a CO molecule of 256 kcal/mole and the great affinity of oxygen for rhenium; ERe?O = 127 kcal/mole.  相似文献   

6.
The interaction of CO, O2, H2, N2, C2H4 and C6H6 with an Ir(110) surface has been studied using LEED, Auger electron spectroscopy and flash desorption mass spectroscopy. Adsorption of oxygen at 30°C produces a (1× 2) structure, while a c(2 × 2) structure is formed at 400°C. Two peaks have been detected in the thermal desorption spectrum of oxygen following adsorption at 30°C. The heat of adsorption of hydrogen is slightly higher on Ir(110) than on Ir(111). Adsorption of carbon monoxide at 30°C produces a (2 × 1) surface structure. The main CO desorption peak is found around 230, while two other desorption peaks are observed around 340 and 160°C. At exposures between 250 and 500°C carbon monoxide adsorption yields a c(2 × 2) structure and a desorption peak around 600°C. Carbon monoxide is adsorbed on an Ir(110) surface partly covered with oxygen or carbon in a new binding state with a significantly higher desorption temperature than on the clean surface. Adsorption of nitrogen could not be detected on either clean or on carbon covered Ir(110) surfaces. The hydrocarbon molecules do not form ordered surface structures on Ir(110). The thermal desorption spectra obtained after adsorption of C6H6 or C2H4 are similar to those reported previously for Ir(111) consisting mostly of hydrogen. Heating the (110) surface above 700°C in the presence of C6H6 or C2H4 results in the formation of an ordered carbonaceous overlayer with (1 × 1) structure. The results are compared with those obtained previously on the Ir(111) and Ir(755) or stepped [6(111) × (100)] surfaces. The CO adsorption results are discussed in relation to data on similar surfaces of other Group VIII metals.  相似文献   

7.
The interaction of O2, CO2, CO, C2H4 AND C2H4O with Ag(110) has been studied by low energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron energy loss spectroscopy (EELS). For adsorbed oxygen the EELS and TPD signals are measured as a function of coverage (θ). Up to θ = 0.25 the EELS signal is proportional to coverage; above 0.25 evidence is found for dipole-dipole interaction as the EELS signal is no longer proportional to coverage. The TPD signal is not directly proportional to the oxygen coverage, which is explained by diffusion of part of the adsorbed oxygen into the bulk. Oxygen has been adsorbed both at pressures of less than 10-4 Pa in an ultrahigh vacuum chamber and at pressures up to 103 Pa in a preparation chamber. After desorption at 103 Pa a new type of weakly bound subsurface oxygen is identified, which can be transferred to the surface by heating the crystal to 470 K. CO2 is not adsorbed as such on clean silver at 300 K. However, it is adsorbed in the form of a carbonate ion if the surface is first exposed to oxygen. If the crystal is heated this complex decomposes into Oad and CO2 with an activation energy of 27 kcal/mol(1 kcal = 4.187 kJ). Up to an oxygen coverage of 0.25 one CO2 molecule is adsorbed per two oxygen atoms on the surface. At higher oxygen coverages the amount of CO2 adsorbed becomes smaller. CO readily reacts with Oad at room temperature to form CO2. This reaction has been used to measure the number of O atoms present on the surface at 300 K relative to the amount of CO2 that is adsorbed at 300 K by the formation of a carbonate ion. Weakly bound subsurface oxygen does not react with CO at 300 K. Adsorption of C2H4O at 110 K is promoted by the presence of atomic oxygen. The activation energy for desorption of C2H4O from clean silver is ~ 9 kcal/mol, whereas on the oxygen-precovered surface two states are found with activation energies of 8.5 and 12.5 kcal/mol. The results are discussed in terms of the mechanism of ethylene epoxidation over unpromoted and unmoderated silver.  相似文献   

8.
Electron excited carbon KVV Auger spectra of CO, C2H4, C2N2 and C6H6 adsorbed on Pt(111) are compared. By estimating the effective Coulomb interaction between the final-state holes it is possible to associate some features with transitions observed in free molecule spectra, but others must involve at least one electron with energy within the conduction band of the metal. Such “cross-transitions” are associated with strong 2π* character of filled states in the presence of a core hole in molecules such as CO.  相似文献   

9.
The nonpolar (1010), stepped (4041) and (5051), and the polar (0001) surfaces of ZnO were prepared. Stable unreconstructed nonpolar and stepped surfaces were obtained. LEED analyses showed that the step height and the step width of the stepped surfaces were similar to the theoretical values. The polar surface showed a 1 × 1 LEED pattern of six-fold symmetry after annealing at 500°C, and evidence of a more complicated pattern at 300–400°C. Temperature programmed desorption of CO resulted in the desorption of CO from the stepped and the polar surfaces. However, desorption of CO2 was observed from the stoichiometric nonpolar surface, and no desorption from the reduced nonpolar surface. CO2 was also observed by interacting CO with all surfaces at elevated temperatures. A total of four temperature programmed desorption peaks of CO2, α, β, γ, and δ were observed. The α and β peaks were observed on the nonpolar and the stepped surfaces, and the γ peak was observed on the polar surface. The α peak was assigned to adsorption on a surface ZnO pair, and the β peak was assigned to adsorption on an anion vacancy or a step. While adsorbed water enhanced the β, preadsorbed methanol reduced it. O2 adsorption was similar on the nonpolar and the stepped surfaces, but was weak on the polar surface.  相似文献   

10.
The adsorption of potassium and the coadsorption of potassium and oxygen on the Pt(111) and stepped Pt(755) crystal surfaces were studied by AES, LEED, and TDS. Pure potassium adlayers were found by LEED to be hexagonally ordered on Pt(111) at coverages of θ = K0.9–;1. The monolayer coverage was 5.4 × 1014K atoms/cm2 (0.36 times the atomic density of the Pt(111) surface). Orientational reordering of the adlayers, similar to the behavior of noble gas phase transitions on metals, was observed. The heat of desorption of K decreased, due to depolarization effects, from 60 kcal/mole at θK <0.1, to 25 kcal/mole at θK = 1 on both Pt(111) and Pt(755). Exposure to oxygen thermally stabilizes a potassium monolayer, increasing the heat of desorption from 25 to 50 kcal/mole. Both potassium and oxygen were found to desorb simultaneously indicating strong interactions in the adsorbed overlayer. LEED results on Pt(111) further indicate that a planar K2O layer may be formed by annealing coadsorbed potassium and oxygen to 750 K.  相似文献   

11.
Thermal desorption spectroscopy (TDS) has been used to study the chemisorption of CO, O2, and h2 on Pt. It has been found that TDS is quite sensitive to local surface structure. Three single crystal and two polycrystalline Pt surfaces were studied. One single crystal was cut to expose the smooth, hexagonally close-packed plane of the fee Pt crystal (the (111) surface). The other two single crystals were cut to expose stepped surfaces consisting of smooth, hexagonally close-packed terraces six atoms wide separated by one atom high steps (the 6(111) × (100) and 6(111) × (111) surfaces). Only one predominant desorption state was observed for CO and H adsorbed on the smooth (111) single crystal surface, while two predominant desorption states were observed for these gases adsorbed on the stepped single crystal surfaces. The low temperature desorption states on the stepped surfaces are attributed to desorption from the terraces, while the high temperature desorption states are attributed to desorption from the steps. TDS of CO from the polycrystalline foils exhibited some desorption states which were similar to those observed on the stepped single crystal surfaces, indicating the presence of adsorption sites on the polycrystalline foils that were similar to the terrace and step sites on the stepped single crystals. In general, these results suggest a high density of defect sites on the polycrystalline foils which can not be attributed simply to adsorption at grain boundaries. Oxygen was found to adsorb well on the stepped single crystals and on the polycrystalline foils, but not on the smooth (111) single crystal, under the conditions of these experiments. This is attributed to a higher sticking probability for dissociative O2 adsorption at steps or defects than on terraces.  相似文献   

12.
Yuhai Hu  Keith Griffiths   《Surface science》2008,602(17):2949-2954
Fourier transform infra red reflection–absorption spectroscopy (FTIR-RAS), thermal desorption spectroscopy (TDS), and auger electron spectroscopy (AES), were employed to explore the mechanism of NO reduction in the presence of C2H4 on the surface of stepped Pt(3 3 2). Both NO–Pt and C2H4–Pt interactions are enhanced when NO and C2H4 are co-adsorbed on Pt(3 3 2). As a result, C2H4 is dissociated at surface temperatures as low as 150 K, and the N–O stretch band is weakened. The presence of post-exposed C2H4 leads NO desorption from steps to decrease significantly, but the same effect on NO desorption from terraces becomes appreciable only at higher post-exposures of C2H4, e.g., 0.6 L and 1.2 L, and proceeds to a much slighter extent. Auger spectra indicate that as a result of the reaction with O from NO dissociation, the amount of surface C species is greatly reduced when NO is post-exposed to a C2H4 adlayer. It is concluded that reduction of NO in the presence of C2H4 proceeds very effectively on the surface of the Pt(3 3 2), through a mechanism of NO dissociation and subsequent O removal. Following this mechanism, the significant dissociation of adsorbed NO molecules on steps at surface temperatures below 400 K, and subsequent rapid reaction between the resultant O and C-related species, accounts for the considerable amount of N2 desorption at temperatures below 400 K.  相似文献   

13.
C2H4在Ru(1010)表面吸附与分解的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
用X射线电子能谱(XPS)、热脱附谱(TDS)和紫外光电子能谱(UPS)方法研究了乙烯(C2H4)在Ru(1010)表面的吸附,在低温下(200K以下)乙稀(C24)可以在Ru(1010)表面上以分子状态稳定吸附,在200K以上乙烯(C2H 4)则发生了脱氢分解反应.TDS结果表明乙烯(C2H4)分 解后的主要产物为乙炔(C< 关键词: 乙烯 钌(1010)表面 吸附与分解  相似文献   

14.
We have studied the influence of CO on the adsorption of benzene on the Co(0 0 0 1) surface using LEED, XPS, TDS and work function measurements. CO was found to reduce the benzene adsorption, but even at saturation CO exposure no complete blocking was observed. Thermal desorption of the coadsorbed layer featured CO and H2 peaks indicating partial dehydrogenation of benzene and retaining of the CO bond. Ordered LEED structures were found with all coverages: Pre-adsorption of CO led to patterns already seen for pure carbon monoxide adsorption. Pre-adsorption of benzene showed the known structure of pure benzene also with small CO exposures, but higher CO exposures yielded a mixture of and patterns.  相似文献   

15.
The adsorption of CO, O2, and H2O was studied on both the (111) and [6(111) × (100)] crystal faces of iridium. The techniques used were LEED, AES, and thermal desorption. Marked differences were found in surface structures and heats of adsorption on these crystal faces. Oxygen is adsorbed in a single bonding state on the (111) face. On the stepped iridium surface an additional bonding state with a higher heat of adsorption was detected which can be attributed to oxygen adsorbed at steps. On both (111) and stepped iridium crystal faces the adsorption of oxygen at room temperature produced a (2 × 1) surface structure. Two surface structures were found for CO adsorbed on Ir(111); a (√3 × √3)R30° at an exposure of 1.5–2.5 L and a (2√3 × 2√3)R30° at higher coverage. No indication for ordering of adsorbed CO was found on the Ir(S)-[6(111) × (100)] surface. No significant differences in thermal desorption spectra of CO were found on these two faces. H2O is not adsorbed at 300 K on either iridium crystal face. The reaction of CO with O2 was studied on Ir(111) and the results are discussed. The influence of steps on the adsorption behaviour of CO and O2 on iridium and the correlation with the results found previously on the same platinum crystal faces are discussed.  相似文献   

16.
Counterflow diffusion flame experiments and modeling results are presented for a fuel mixture consisting of N2, C2H2, and C2H4 flowing against decomposition products from a solid AP pellet. The flame zone simulates the diffusion flame structure that is expected to exist between reaction products from AP crystals and a hydrocarbon binder. Quantitative species and temperature profiles have been measured for one strain rate, given by a separation of 5 mm, between the fuel exit and the AP surface. Species measured include C2H2, C2H4, N2, CN, NH, OH, CH, C2, NO, NO2, O2, CO2, H2, CO, HCl, H2O, and soot volume fraction. Temperature was measured using a combination of a thermocouple at the fuel exit and other selected locations, spontaneous Raman scattering measurements throughout the flame, NO vibrational populations, and OH rotational population distributions. The burning rate of the AP was also measured for this flame’s strain rate. The measured eighteen scalars are compared with predictions from a detailed gas-phase kinetics model consisting of 105 species and 660 reactions. Model predictions are found to be in good agreement with experiment and illustrate the type of kinetic features that may be expected to occur in propellants when AP particles burn with the decomposition products of a polymeric binder.  相似文献   

17.
Energy loss spectra of 2.5 keV electrons in the region of the carbon K-edge in C2H2, C2H4, C2H6 and C6H6 are report  相似文献   

18.
The adsorption/desorption characteristics of CO, O2, and H2 on the Pt(100)-(5 × 20) surface were examined using flash desorption spectroscopy. Subsequent to adsorption at 300 K, CO desorbed from the (5×20) surface in three peaks with binding energies of 28, 31.6 and 33 kcal gmol?1. These states formed differently from those following adsorption on the Pt(100)-(1 × 1) surface, suggesting structural effects on adsorption. Oxygen could be readily adsorbed on the (5×20) surface at temperatures above 500 K and high O2 fluxes up to coverages of 23 of a monolayer with a net sticking probability to ssaturation of ? 10?3. Oxygen adsorption reconstructed the (5 × 20) surface, and several ordered LEED patterns were observed. Upon heating, oxygen desorbed from the surface in two peaks at 676 and 709 K; the lower temperature peak exhibited atrractive lateral interactions evidenced by autocatalytic desorption kinetics. Hydrogen was also found to reconstruct the (5 × 20) surface to the (1 × 1) structure, provided adsorption was performed at 200 K. For all three species, CO, O2, and H2, the surface returned to the (5 × 20) structure only after the adsorbates were completely desorbed from the surface.  相似文献   

19.
Yuhai Hu 《Surface science》2007,601(21):5002-5009
The influence of pre-dosed O2 on the catalytic reduction of NO with 13C2H5OH on the surface of stepped Pt(3 3 2) was investigated using Fourier transform infra red reflection-absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). We show that the oxidation of 13C2H5OH with O2 is a very effective reaction, occurring at 150 K and giving rise to acetate. The presence of NO does not lead to any evident oxidation of 13C2H5OH irrespective of the annealing temperature. For the case of O2 + 13C2H5OH + NO co-adlayers, oxidation of 13C2H5OH also takes place at 150 K. However, no new surface species that are supposed to be an intermediate for the production of N2 are detected.The influence of O2 on the production and desorption of N2 is intimately related to both O2 and 13C2H5OH coverage. The presence of pre-dosed O2 does not greatly promote N2 desorption. In fact, N2 desorption is suppressed quantitatively with increasing O2 coverage, after which unreacted, or left-over O atoms appear and remain on steps. It is concluded that the presence of pre-dosed O2 does not play a role of activating reactants in the catalytic reduction of NO with 13C2H5OH on the surface of Pt(3 3 2).  相似文献   

20.
The adsorption and desorption of oxygen, carbon monoxide, deuterium and ethylene has been studied over rhenium films using thermal desorption spectroscopy, low energy electron diffraction and Auger electron spectroscopy. The films, obtained by evaporating rhenium onto a platinum (111) single crystal, grow over the substrate forming (0001) basal plane rhenium surfaces. Oxygen chemisorbs on this film, forming an ordered structure, consisting of three (2 × 1) overlayer domains and giving a saturation coverage of half a monolayer of atomic oxygen. CO chemisorption is mainly molecular, although some dissociation occurs at temperatures above about 700 K. A complicated LEED pattern is obtained when saturating the surface at 150 K with CO, but it changes to a (2 × 2) or (2 × 1) structure upon heating. Also, CO chemisorption can be modified by predissociated CO or preadsorbed oxygen on the rhenium surface. Deuterium desorbs in three peaks, starting at temperatures as low as 150 K. Ethylene desorbs partially intact at around 250 K, the rest decomposing and yielding hydrogen, that appears as two main peaks at 357 K and 460 K during thermal desorption. We conclude that epitaxially grown films may be an alternative to single crystals for studying chemisorption over well ordered surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号