首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The chemisorption of both CO and O2 on a clean tungsten ribbon has been studied using an ultrahigh vacuum X-ray photoelectron spectrometer. For CO, the energy and intensity of photoemission from O(1s) and C(1s) core levels have been studied for various adsorption temperatures.At adsorption temperatures of ~100 K., the “virgin”-CO state was the dominant adsorbed species. Conversion of this state to more strongly-bound β-CO is observed upon heating the adsorbed layer to ~320K. Thermal desorption of CO at 300?T?640 K causes sequential loss of α1-CO and α2-CO as judged by the disappearance of O(1s) and C(1s) photoelectron peaks characteristic of these states.Oxygen adsorption at 300K gives a single main O(ls) peak at all coverages, although at high oxygen coverages there exist small auxiliary peaks at ~2eV lower kinetic energy. The photoelectron C(1s) and O(1s) binding energies observed for these adsorbed species are all lower than for gaseous molecules containing C and O atoms. For CO adsorption states there is a systematic decrease in photoelectron binding energy as the strength of adsorption increases. These observations are in general accord with expectations based on electronic relaxation effects in condensed materials.  相似文献   

2.
Previous measurements by Wilkening and Hesse have shown, that the excess relaxation rate ΔT-11 of the matrix nuclei in CuFe dilute alloys can be explained in terms of the LD-model with rapid spin diffusion. Measurements reported in this paper confirm the existence of an electric quadrupole diffusion barrier. It could be shown that the influence of the quadrupole barrier is coupled to large clusters within the alloy. The electron spin lattice relaxation time τ1 behaves temperature independent in the range 30 K ? T ? 300 K. This can be understood if an effective correlation time τ is introduced, which results from a distrubution of temperature dependent times τcl(T) belonging to clusters of different size.  相似文献   

3.
In search for structural contributions to the low temperature anomaly we report high resolution resistance and magnetoresistance measurements (0.02 K ? T ? 20 K) of amorphous splats of Gd67Co33 and Pd80Si20. For both alloys, the resistivity ?(H = 0, T) has a minimum at T ~ 10 K and increases with decreasing T. The ferromagnetic Gd67Co33 shows a strong negative field dependence of Δ??(0), saturating at H ~ 2T for T = 4.2 K but no measurable change in ???T below 10 K is observed.The diamagnetic Pd80Si20 exhibits a positive field dependent magnetoresistance [Δ??(0)](H) at low temperatures. Additionally, a field dependent part in ???T is found which is probably due to paramagnetic impurities (~ 1 ppm Fe). However, there is also a field independent contribution in the amorphous state of Pd80Si20, which vanishes after crystallization. We attribute this to non-magnetic scattering induced by the disordered structure.  相似文献   

4.
The adsorption, thermal desorption and surface diffusion of titanium on tungsten in ultra-high vacuum have been studied by field emission microscopy. The work function versus coverage curve has a minimum of 3.95 eV. The theory of metallic adsorbate-induced work function changes given by Gyftopoulos and Levine gives results which are in good agreement with our experimental values. In some experiments the work function minimum occurs at 3.65 eV. This value corresponds to the value of the work function of β-titanium. It is believed that α-titanium to β-titanium phase transformation occurs when the emitter tip is annelaed at 1100 °K to sperad the titanium uniformly over its surface. Surface diffusion of titanium on tungsten occurs with a sharp boundary at 800 °K and the activation energies for the (211)→(411) directions are 43.0 and 42.3 kcalmole respectively. The activation energy of thermal desorption was dependent on the coverage and ranges from 115.3 to 160.4 kcalmole. A satisfactory qualitative correlation between the theory and experiment is established.  相似文献   

5.
The diffusion of hydrogen in palladium (HPd = 0.73) has been investigated from 170 to 300K by measurements of the proton spin-lattice relaxation time in the rotating frame, T1?. In contrast to previous T1 measurements, a single activation energy of 0.225 eV is obtained, in agreement with the high-temperature T1 data and with internal friction experiments at about 120K.  相似文献   

6.
Thermal desorption and photoemission spectroscopy (PES) have been used to investigate the chemisorption of CO on an annealed Pt0.98Cu0.02(110) surface. The clean surface shows 9.1 ± 2.6% Cu within the top 4 Å, and is (1 × 3) reconstructed. Thermal desorption of CO has revealed the existence of various adsorption states with these respective heats of adsorption: (α) 35.2 to 37.8 kcal/mol and (β) 24.5 to 26.3 kcal/mol on Pt sites, (γ) 16.0 to 17.2 kcal/mol on PtCu “mixed” sited, and (δ) 12.9 to 13.9 kcal/mol on Cu sites. PES observation of Cu 3d-derived states (using hv = 150 eV) and the Cu 2p32 core levels (using Mg Kα radiation) shows that the electronic structure of the Cu constituent is changed only when CO adsorbs on the Pt-Cu “mixed” sites or the Cu sites. Furthermore, the CO states associated with Pt sites reflect the structural difference between the (1 × 3) alloy surface and the (1 × 2) pure Pt(110) surface: α-CO on the alloy surface desorbs at a temperature 17 to 21 K. higher than the maximum desorption temperature of CO from pure Pt(110), and the ratio of β-CO to α-CO desorption from the alloy surface is larger than the ratio of low temperature to high temperature peaks in the desorption of CO from pure Pt(110).  相似文献   

7.
The adsorption of carbon monoxide and carbon dioxide on tantalum and the dissolution of these gases in the adsorbent at T ? 300 K have been studied. The flash-filament method (FFM) in a monopole mass-spectrometer and a field emission microscopy was used in the same apparatus. Carbon monoxide and carbon dioxide dissociate on the tantalum surface, carbon monoxide being desorbed in both cases during the flash. The desorption curves of CO reveal three different binding states: two of them (α and \?gb1) for the adsorbed particles whereas the high temperature desorption state relates to the adsorbate dissolved in the metal, For the \?gb1 state of CO the activation energy, the pre-exponential factor and the kinetic order in the kinetic equation of desorption have been estimated. They turned out to be E = 110 kcal/mol, C = 3 × 1012sec?1, and ν = 1. The activation energy of diffusion for CO in tantalum and the energy of outgassing for the metal were found to be 9.4 and 49 kcal/mole, respectively.  相似文献   

8.
The chemisorption of CO on Co(0001) and on a polycrystalline specimen has been studied by LEED, Auger spectroscopy, and thermal desorption measurements. Annealing of the polycrystal was found to result in a surface dominated by crystallites of (0001) orientation in the surface plane, along with a few (101̄2) oriented crystallites. CO adsorbs on the clean surface at 300 K with an initial sticking probability of 0.9 and the system follows precursor state kinetics. The saturation coverage under UHV conditions corresponds to a well-ordered (√3 × √3)R30° structure; with PCO>5 × 10-9 a uniform compression of the adlayer takes place and a (√7 × √7)R19.2° structure begins to form. Models are proposed for these two ordered phases which are in agreement with the observed relative coverage data and the appearance of the corresponding desorption spectra. The desorption enthalpy of CO at low coverages is 103 ± 8 kJmol-1, and a fairly sharp fall in this enthalpy occurs for coverages >13. In many respects, the system's behaviour closely resembles that of Ni(111)-CO. Oxygen contamination leads to the appearance of a strongly adsorbed CO state with a desorption enthalpy of ~170 kJmol-1. This is reminiscent of a strongly adsorbed non-dissociated state of CO on Ru(101̄1) which occurs under similar conditions.  相似文献   

9.
A new modification of molecular beam relaxation spectrometry (MBRS) is described: the temperature jump method for studying catalytic surface processes on metal foils. The temperature of the catalyst foil is maintained by direct ohmic heating; a constant particle beam is directed towards the catalyst surface. A jump of the surface temperature caused by a high current pulse generates a response of the fluxes of desorption. The decay of the desorption intensity after the temperature jump contains the relaxation times of the elementary steps involved. The mathematical treatments of unimolecular and bimolecular surface reactions, of sequences of two and three unimolecular steps and of a sequential reaction accompanied by the redesorption of the reactant are given. The application of the new method is shown by a study of the catalytic decomposition of CH3)OH on polycrystalline Ni: CO and H2 are the sole reaction products. The limit of the catalytic activity — apart from the low sticking probability of the reactant — must be seen in the abstraction of the first methyl hydrogen from the transient methoxy species. In the temperature range between 320 and 550 K the reaction mechanism can be described as follows:
Rate constants in dependence from surface temperature T are: k1 = 4.2 × 104 exp(?22.4RTkJmol) s?1; k3 = 2.4 × 109 exp(?75RTkJmol) s?1; k4 = 1.2 × 1013 exp(?104RTkJmol) s?1; η = 0.2. Typical surface residence times of the intermediates are: 110 ? τ1 ? 15 ms at 320 ? T ? 450 K; 210 ? τ3 ? 6 ms at 450 ? T ? 550 K; 98 ? τ4 ? 6 ms at 450 ? T ? 500 K.  相似文献   

10.
An extensive photoemission and LEED study of K and CO+K on Ru(001) has been carried out. In this paper the LEED and some XPS results together with TPD and HREELS data are presented in terms of adsorption, desorption. and structural properties, and their compatibility is discussed. Potassium forms (2 × 2) and (3 × 3)R30° overlayers below and near monolayer coverage, and multilayer bonding and desorption is similar to that of bulk K. The initial sticking coefficients for CO adsorption on K predosed surfaces are correlated with the initial K structure, and s0 and CO saturation coverages decrease with increasing K coverage. Two well-characterized mixed CO+K layers have been found which are correlated with predosed (2 × 2) K and (3 × 3)R30° K. They have CO to K ratios of 3:2 and 1:1, and lead to LEED patterns with (2 × 2) and (3 × 3) symmetry, respectively. The molecule is believed to be sp2 rehybridized under the influence of coadsorbed K, leading to stronger CO-Ru and weaker C-O bonds as indicated by the TPD and HREELS results, and to stand upright in essentially twofold bridges.  相似文献   

11.
The adsorption of CO and O on Ni (111) was studied by low-energy ion scattering (ISS) and low-energy electron diffraction (LEED). For the ordered (√7/2) × (√7/2) R19.1° CO layer ion scattering gives a coverage greater than 12 monolayer, and for the (2 × 2) O layer a coverage of 14 monolayer. The CO is non-dissociatively adsorbed, with the C bound to the Ni. The molecules are oriented parallel to the surface normal. Island formation at lower CO coverages is possible.  相似文献   

12.
Auger electron spectroscopy (AES) has been employed to determine the relative coverage of oxygen on polycrystalline tungsten at high temperatures (1200 ?T ? 2500 K) and low O2 pressures (5 × 10?9 ?po2 ?5 × 10?6 Torr). We believe that this is the first demonstration that chemical analysis of solid surfaces by AES is possible even at temperatures as high as 2500 K. It is assumed that the relative oxygen coverage is directly proportional to the peak-to-peak amplitude of the first derivative of the 509 eV oxygen Auger peak. The experimental results illustrate the dependence of coverage on temperature and pressure, and it is shown that the results for low coverages may be described reasonably well by a simple first-order desorption model plus a semi-empirical expression for the equilibration probability (or sticking coefficient). On the basis of this approximate model, the binding energy of oxygen on tungsten is estimated as a function of coverage, giving a value of ~ 140 kcalmole in the limit of zero coverage.  相似文献   

13.
The kinetics of the desorption of CO from a Pt(111) crystal between 419 and 505 K is reported using a Low-Energy Molecular-Beam-Scattering (LEMS) technique with a helium probe beam and a CO dosing beam. The resulting first-order Arrhenius rate constant is k = 2.7 × 1013exp(?31.1 kcalmole · RT) s?1. We also report a study of the equilibriumadsorbed CO between 400 and 600 K using LEMS. These results, fitted to a Temkin isotherm model, indicate that the adsorption energy decreases linearly with surface coverage with the average value equal to 31.1 + 1.2 kcalmole over the coverage range 0 < θ ? 0.5. The average harmonic oscillator frequency of the adsorbed CO molecules is 191 ± 76 cm?1.  相似文献   

14.
The adsorption states of carbon monoxide on polycrystalline nickel films have been investigated by measuring the thermal desorption, the heat of adsorption, the change in resistivity, and the change in work function in dependence on coverage and temperature. It can be shown that there are two chemisorbed (β2, β2) and one weakly bound (γ) species. Desorption peaks appear at 170K, 310–360 K, and 460–490 K. The differential heat of adsorption is 30kcalmole at low coverages and approximately 25 kcalmole between 0.3 and 0.6 monolayers. The resistivity of the nickel film is characteristically changed with increasing coverage, and there is a maximum of resistivity at half a monolayer. At low coverages the increase in the work function is proportional to the amount adsorbed; at a monolayer the total increase is 1.26 eV at 77 K and 1.46 eV at 273 K. The two chemisorbed species differ only in the structures they form in the adsorption phase, β2 being the species that is stable at low coverages, β1 being the species that is stable at high coverages. These results are in good agreement with those recently found for CO adsorption on single crystal surfaces.  相似文献   

15.
The effect of a magnetic field, B, on heat flow in a gas in an intermediate pressure range has been studied. The ratio of the heat flow changes in the fields B ⊥ ?T and B 6 ?T was found to change nonmonotonically with pressure in N2 and CO. With the decreasing pressure, a difference is observed between the dependence of heat flow on field orientation and the corresponding angular dependence in the limiting case Kn→0 (Kn = l/L, l is the mean free path, L is the geometric size). An expression has been obtained for the heat flow in a magnetic field for Kn ? 0.1 from the solution of an integral kinetic equation. In particular, it has been shown that the special features of the Senftleben-Beenakker effect observed with the decreasing pressure arise not only due to spherically symmetric molecule-surface interaction, but also to nonspherical scattering on walls.  相似文献   

16.
Optical measurements on crystals in the series SnSxSe2?x for 0 ? x ? 2, have yielded information on the changes in the ordinary refractive index ΔnΔT and the energy gap ΔEgΔT in the temperature range 125–425 K. The coefficient ΔnΔT has values +40 to +160 × 10?6K?1 and this confirms that covalent bonding predominantly exists in these materials. The coefficient ΔEgΔT remains fairly consistent for all values of x with an average value of -8.0×10-4eV K-1.  相似文献   

17.
The adsorption of K on Pt(100) has been followed by thermal desorption spectroscopy (TDS) and Auger electron spectroscopy (AES); carbon monoxide was used as a probe for the modification of the chemical properties of K promoted surfaces. The role of subsequent adsorption of oxygen on the K modified surfaces has also been measured. For low potassium coverage (θK = 0 to 0.35), the mass-28 TDS peak temperature of adsorbed CO increases continuously with the K coverage, indicating an increase of the adsorption energy of CO which has been explained by a substantial charge donation from K into the 1 orbitals of CO via long range interactions through the platinum substrate. No oxygen uptake was detected after oxygen exposure at room temperature. For high potassium content (θK = 0.45 to 1), the mass-28 TDS peak temperature of coadsorbed CO is very narrow and remains constant at 680 K. We propose the formation of a COKPt surface complex which decomposes at 680 K, since K desorption is detected concomitantly to CO. On such K covered surfaces, the oxygen uptake is promoted, and it cancels the modifications of the surface properties induced by potassium.  相似文献   

18.
The diffusion of 1H and 2H on the (111) plane of a W field emitter has been studied by the fluctuation method at various coverages. Both activated and unactivated diffusion is observed; the latter shows very little isotope effect, suggesting that coupling to the substrate is so strong that mass renormalization makes the effective masses of 1H and 2H nearly identical. Values of D in the tunneling, i.e. temperature independent, regime are 10?13?5 × 10?14 cm2/s depending on coverage. For activated diffusion at high coverages, corresponding to population of the β1 state E = 2.4?3.2 kcal/mol and D0 = 2 × 10?8 ?5 × 10?7 cm2/s, depending on coverage. For lower coverages, corresponding to β2 population, E = 7–9 kcal/mol, D0 = 9 × 10?6 ?2 × 10?3 cm2/s, again depending on coverage. Similar values are obtained for 2H, with E and D0 values slightly reduced. An exponentially decaying correlation signal for clean W was also seen and interpreted in terms of flip-flop of W atoms.  相似文献   

19.
The dynamic properties of an n-component phonon system in d dimensions, which serves as a model for a structural phase transition of second order, are investigated. The symmetry group of the hamiltonian is the group of orthogonal transformations O(n). For n ≥ 2 a continuous symmetry is broken for T<Tc, where Tc is the transition temperature. We derive the hydrodynamic equations for the generators of this group, the 12n (n ? 1) angular-momentum variables. Besides the usual hydrodynamics of a phonon system, there are 12n (n ? 1) additional independent diffusive modes for T > Tc. In the ordered phase we find 2 (n ? 1) propagating modes with linear dispersion and quadratic damping. Formally the hydrodynamics is similar in the isotropic Heisenberg ferromagnet (n = 2) or the isotropic antiferromagnet (n ≥ 3). The relaxing modes for T < Tc require special care. We study the critical dynamics by means of the dynamical scaling hypothesis and by a mode-coupling calculation, both of which give the critical dynamical exponent z = 12d. The results are compared with the 1/n expansion. It is shown that for large n there is a non-asymptotic region characterized by an effective exponent z? = φ/2ν, where φ is the crossover exponent for a uniaxial perturbation, and ν the critical exponent of the correlation length.  相似文献   

20.
Spin resonance measurements have been used to obtain the temperature dependence of the magnetization in (FexNi1?x)75P16B6A?3 alloys for 4 ? T ? 300K. With x = 0.5, spin wave theory is adequate to account for the observations. For x = 0.4 and 0.3 marked deviations from T32 behavior are noted below ~ 70K and we propose a simple model to account for these deviations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号