共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Southworth W.D. Brewer C.M. Truesdale P.H. Kobrin D.W. Lindle D.A. Shirley 《Journal of Electron Spectroscopy and Related Phenomena》1982,26(1):43-51
The photoelectron asymmetry parameters of H2 and D2 have been measured using synchrotron radiation over the photon energy range 19–27 eV. The results are compared with previous measurements and several theoretical calculations. A few of the theoretical calculations are in good agreement with experiment, but most of them predict asymmetries which are too large. Essentially identical β values were measured for H2 and D2. This result is discussed in terms of differences which could arise due to vibrational and rotational structure. 相似文献
2.
The desorption of hydrogen (H2 and D2) from a polycrystalline nickel surface has been investigated by measuring the spatial and speed distributions of the desorbed molecules. The Ni specimen was constructed as a membrane with one side exposed to hydrogen at ~ 1 atm pressure and the other side exposed to vacuum, thereby enabling us to supply hydrogen to the test surface via permeation of atoms through the membrane. These atoms recombine on the surface to form molecules that desorb into the evacuated chamber. The spatial distribution of the desorbed molecules was measured with a rotatable ionization gauge, whereas the speed distribution of molecules desorbed along the surface normal was determined by means of a time-of-flight detector in a second apparatus. 相似文献
3.
Carl M. Matthews Frank Balzer Alexander J. Hallock Mark D. Ellison Richard N. Zare 《Surface science》2000,460(1-3):12-20
A cold (Trot<10 K) beam of N2 with an initial translational energy of 0.40 eV strikes an Ni(111) surface at surface temperatures from 300 to 873 K at several incident angles from 15 to 60°. The rotational energy and angular distributions of the scattered molecules are probed using (2+1) resonance-enhanced multiphoton ionization. Molecules scattered in the specular direction have mean rotational energies that are independent of surface temperature, whereas those scattered at angles far from the specular show a dependence on surface temperature, caused likely by multiple collisions with the surface before escape. A rotational rainbow, seen in systems such as CO–Ni(111) and N2–Ag(111), is not seen in this system. For molecules that scatter close to the specular direction, approximately 10% of the initial translational energy is converted into rotational energy of the scattered N2. For surface temperatures above room temperature, the angular distributions indicate that molecules that scatter into low-J states also tend to exit in a broad peak (10–20° FWHM) near the specular, and this peak is broadened with increasing incident angle. The molecules that scatter into high-J states have a much broader distribution, indicating that they are trapped rotationally during the initial collision and suffer multiple collisions before leaving the surface. 相似文献
4.
Elastic and direct-inelastic scattering as well as dissociative adsorption and associative desorption of H2 and D2 on Ni(110) and Ni(111) surfaces were studied by molecular beam techniques. Inelastic scattering at the molecular potential is dominated by phonon interactions. With Ni(110), dissociative adsorption occurs with nearly unity sticking probability s0, irrespective of surface temperature Ts and mean kinetic energy normal to the surface 〈 E⊥ 〉. The desorbing molecules exhibit a cos θe angular distribution indicating full thermal accommodation of their translation energy. With Ni(111), on the other hand, s0 is only about 0.05 if both the gas and the surface are at room temperature. s0 is again independent of Ts, but increases continuously with 〈 E⊥ 〉 up to a value of ~0.4 for 〈 E⊥ 〉 = 0.12 eV. The cos5θe angular distribution of desorbing molecules indicates that in this case they carry off excess translational energy. The results are qualitatively rationalized in terms of a two-dimensional potential diagram with an activation barrier in the entrance channel. While the height of this barrier seems to be negligible for Ni(110), it is about 0.1 eV for Ni(111) and can be overcome through high enough translational energy by direct collision. The results show no evidence for intermediate trapping in a molecular “precursor” state on the clean surfaces, but this effect may play a role at finite coverages. 相似文献
5.
H2 and D2 are scattered from clean Pd(111) and a saturated chemisorption layer in a highly specular distribution. Evidence for an ordering of the adiayer with increasing coverage is seen. The hydrogen-deuterium exchange occurs via a Langmuir-Hinshelwood mechanism, and the temperature dependence of the rate of HD production can be understood without assuming an activation energy for equilibration. Lock-in and wave-form analyses of scattered H2 + D2 mixed beams show that equilibrium between adsorbed hydrogen and deuterium and that dissolved just below the surface is reached rapidly at temperatures above 300 K. 相似文献
6.
7.
Energies and probabilities of Lyman transitions of high rovibrationally excited H2, HD and D2 molecules have been measured and compared with calculations. The experimental results are obtained from laser-induced fluorescence spectra that have been recorded in the spectral range from 60 500 to 83 500 cm−1, covering 2/3 of the hydrogen Lyman band system. The necessary vacuum-UV radiation is produced by stimulated anti-Stokes Raman scattering, providing a widely tunable radiation source with narrow spectral bandwidth to resolve single Lyman transitions. The highest internal energies of detected hydrogen isotopologues are close to the dissociation limit. This extends the available data base of Lyman transitions from and to higher rotational states (J > 10) of HD and D2. 相似文献
8.
A comparative study of the adsorption of several gases on a Pt(S)-[9(111) × (111)] surface was performed using LEED, Auger spectroscopy, flash desorption mass spectrometry and work function changes as surface sensitive techniques. Adsorption was found to be generally less ordered on the stepped surface than on the corresponding flat surface with the exception of the oxygen, where r well ordered overlayer in registry over many terraces was found. Absolute coverages were determined from flash desorption experiments for O2, CO and C2N2. Similar values were obtained as on flat Pt surfaces. Two different surface species seem to be formed upon adsorption of C2H4 depending on the adsorption temperature. Contrary to reports from Pt(111) surfaces conversion between the two surface species is heavily restricted on the stepped surface. Work function changes revealed nonlinear adsorbate effects where the adsorbate is electronegative with respect to the substrate. Various adsorption models are discussed in the light of complementary experimental evidence. The results of this study are compared with data available from flat Pt surfaces and possible influences of steps are discussed. No general trends, however, emerge from this comparison and it seems that eventual influences of steps have to be considered individually for every adsorbate. 相似文献
9.
Angle-resolved photoemission spectra have been obtained for annealed Ni0.84Cu0.16(111) single crystals. Emission peaks 1.8–4.0 eV below the Fermi energy are attributed to electronic states of the Cu-rich surface layer. The measured dispersion of these peaks is in close correspondence with the calculated energy bands of a free Cu (111) monolayer. Ni-derived bulk transitions are also identified. 相似文献
10.
The chemisorption of H2, O2, CO, CO2, NO, C2H4, C2H2 and C has been studied on the clean Rh(111) and (100) surfaces. LEED, AES and thermal desorption were used to determine the surface structures, disordering and desorption temperatures, displacement and decomposition characteristics for each species. All of the molecules studied readily chemisorbed on both surfaces. A large variety of ordered structures was observed, especially on the (111) surface. The disordering temperatures of most ordered surface structures on the (111) surface were below 100°C. It was necessary to adsorb the gases at 25° C or below in order to obtain well-ordered surface structures. Chemisorbed oxygen was readily removed from the surface by H2 or CO gas at crystal temperatures above 50°C. CO2 appears to dissociate to CO upon adsorption on both rhodium surfaces as indicated by the identical ordering and desorption characteristics of these two molecules. C2H4 and C2H2 also had very similar ordering and desorption characteristics and it is likely that the adsorbed species formed by both molecules is the same. Decomposition of ethylene produced a sequence of ordered carbon surface structures on the (111) face as a result of a bulk-surface carbon equilibrium. The chemisorption properties of rhodium appear to be generally similar to those of iridium, nickel and palladium. 相似文献
11.
A kinetic study of D2 formation from HCOOD decomposition on Ni(110) (2 × 1)C was performed using the flash desorption technique. The surface structure and surface composition were monitored by low energy electron diffraction (LEED) and Auger electron spectroscopy (AES). Flash curves were obtained using initial coverage and heating rate variations. D2 formation exhibited a single second-order rate-determining step. Three different techniques were employed in obtaining the activation energy, two of which did not require the assumption of reaction order. Using an average value of 12.6 kcal/mole for the activation energy the pre-exponential factor was calculated to be 2.7 × 10?4 cm2 molecules?1 sec?1. Good agreement was achieved with the theoretically generated second-order flash curves only up to the peak temperature. The discrepancy on the high temperature side was explained using the model proposed by Clavenna and Schmidt utilizing a coverage dependent pre-exponential factor. 相似文献
12.
The coadsorption of PH3 with H2, D2, O2 and H2O on Rh(100) has been studied using temperature programmed desorption (TPD), Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). The adsorption and molecular desorption of PH3 is not affected by preadsorbed H2, D2 and O2. Preadsorbed PH3 blocks H2 desorption sites while postdosed PH3 displaces H2 (D21) from the Rh(100). When D2 and PH3 are coadsorbed, no D appears in desorbed phosphine. Preadsorbed O2 reduces the amount of H2 desorption (from PH3 decomposition) and increases the H2 desorption temperature. There is also some reaction between O(a) and H(a) to form water. Preexposure to H2O decreases the extent of PH3 adsorption and of PH3 decomposition. 相似文献
13.
14.
15.
The chemisorption of small molecules (CO, CO2, C2H2, C2H4, H2 and NH3) has been studied on the clean Fe(110) and (111) crystal faces by low-energy electron diffraction (LEED) and thermal desorption. C2H4 and C2H2 yield the same sequence of surface structures that change with temperature and crystal orientation. CO and CO2 chemisorption similarly results in the formation of the same types of surface structures that change with surface temperature and crystal orientation. Ammonia forms several ordered surface structures on both iron crystal faces. All of the molecules decompose as a function of temperature on the iron surfaces as indicated by the Auger and thermal desorption spectra. 相似文献
16.
采用Gaussian 98程序,运用B3LYP方法,对Pd和Pb原子采用收缩价基组LANL2DZ,对Pb2和PdPb2分子的微观结构进行了理论计算. 由于Pb2分子离解后一个Pb原子处于基态,另一个Pb原子处于激发态,采用最小二乘法拟合Pb2分子的势能函数,选用的函数形式为Murrell-Sorbie势能函数加上开关函数. 使用多体展式理论导出了势函数中的参数进而给出PdPb2分子基态势函数的解析表达式,其势能面准确地复现了PdPb2分子的两个稳定构型(C2V和C∞v)及其能量关系.
关键词:
2')" href="#">Pb2
2')" href="#">PdPb2
势能函数 相似文献
17.
18.
We have investigated the recombinative desorption of H2 from Ag(111) using (2 + 1) REMPI to detect the desorbing molecules. We describe a method for determining the energy released into translational motion normal to the surface over a wide range of surface temperatures. This was achieved by using a weak electric field to disperse the ions, in contrast to the usual field-free method. Calibration and analysis methods are discussed and energy distributions P(E) are reported for H2 (v=0). Desorption from a 295 K surface shows only a single low-energy peak (
), whereas the translational energy release is bimodal for desorption from a 580 K surface, with mean desorption energies of approximately 140 meV and 1 eV for the two pathways. Sticking functions are calculated using detailed balance, revealing a large dependence on surface temperature. 相似文献
19.
The nature of sulfate-Ag(111) and sulfate-Au(111) surface bonding has been investigated at the SCF + MP2 level of theory. Convergence of binding energy with cluster size is investigated and, unlike neutral adsorbates, large clusters are required in order to obtain reliable binding energies. In the most stable adsorption mode, sulfate binds to the surface via three oxygen atoms (C3v symmetry) with a binding energy of 159.3 kcal/mol on Ag(111) and 143.9 kcal/mol on Au(111). The geometry of adsorbed sulfate was optimized at the SCF level. While the bond length between sulfur and the oxygens coordinated to the surface increases, the sulfur-uncoordinated oxygen bond length decreases. This weakening and strengthening of the bonds, respectively, is consistent with bond order conservation in adsorbates on metal surfaces. Although a charge transfer of 0.4 electrons towards the metal is observed, the adsorbate remains very much sulfate-like. The molecular orbital analysis indicates that there is also some charge back-donation towards unoccupied orbitals of sulfate. This results in an increased electron density around sulfur as revealed in the electron density difference maps. Analysis of the Laplacian of the charge density of free sulfate provides a suitable framework to understand the nature of the different charge transfer processes and allows us to establish some similarities with the CO- and SO2-metal bondings. 相似文献
20.
采用基于广义梯度近似的投影缀加平面波(projector augmented wave) 赝势和具有三维周期性边界条件的超晶胞模型,用第一性原理计算方法,计算并分析了Pd在CeO2(111)面上不同覆盖度时的吸附能,价键结构和局域电子结构. 考虑了单层Pd和1/4单层Pd两种覆盖度吸附的情况. 结果表明:1)在单层吸附时,Pd的最佳吸附位置是O的顶位偏向Ce的桥位;在1/4单层吸附时,Pd最易在O的桥位偏向次层O的顶位吸附.2) 单层覆盖度吸附时,吸附原子Pd之间的作用较强;1/4单
关键词:
三元催化剂
Pd
2')" href="#">CeO2
吸附
密度泛函理论 相似文献