首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat capacities of structure I and II trimethylene oxide (TMO) clathrate hydrates doped with small amount of potassium hydroxide (x=1.8×10–4 to water) were measured by an adiabatic calorimeter in the temperature range 11–300 K. In the str. I hydrate (TMO·7.67H2O), a glass transition and a higher order phase transition were observed at 60 K and 107.9 K, respectively. The glass transition was considered to be due to the freezing of the reorientation of the host water molecules, which occurred around 85 K in the pure sample and was lowered owing to the acceleration effect of KOH. The relaxation time of the water reorientation and its distribution were estimated and compared with those of other clathrate hydrates. The phase transition was due to the orientational ordering of the guest TMO molecules accommodated in the cages formed by water molecules. The transition was of the higher order and the transition entropy was 1.88 J·K–1(TMO-mol)–1, which indicated that at least 75% of orientational disorder was remaining in the low temperature phase. In the str. II hydrates (TMO·17H2O), only one first-order phase transition appeared at 34.5 K. This transition was considered to be related to the orientational ordering of the water molecules as in the case of the KOH-doped acetone and tetrahydrofuran (THF) hydrates. The transition entropy was 2.36 JK–1(H2O-mol)–1, which is similar to those observed in the acetone and THF hydrates. The relations of the transition temperature and entropy to the guest properties (size and dipole moment) were discussed.Contribution No 57 from the Microcalorimetry Research CenterThe authors would like to express their sincere thanks to the Nissan Science Foundation for their financial support.  相似文献   

2.
Abstract

Heat capacities and complex dielectric permittivities of three clathrate hydrates of type II, encaging tetrahydrofuran (THF), acetone (Ac), and trimethylene oxide (TMO), were measured at low temperatures. The heat capacity measurement was done in the temperature range 13–300 K by using an adiabatic calorimeter with a built-in cryorefrigerator. The permittivities were measured in the temperature range 20–260 K and in the frequency range 20 Hz-1 MHz. For pure samples, with a glass transition due to freezing out of water, reorientational motion of the host lattice was observed calorimetrically at 85 K for THF and at 90 K for Ac hydrates, respectively. Spontaneous temperature drift rates of the calorimetric cell were measured under adiabatic conditions to derive the characteristic time for enthalpy relaxation. The enthalpy relaxation times thus derived were well correlated in an Arrhenius plot with the dielectric relaxation times derived from the dielectric relaxation of orientation polarization. The situation is the same as hexagonal ice which has a similar four co-ordinated hydrogen-bonded network.  相似文献   

3.
Infrared spectra of mixed clathrate hydrates, with either ethylene oxide (EO) or tetrahydrofuran (THF) and methanol molecules as the guest species, have been obtained from thin films prepared by vapor deposition of D2O mixtures in the 115–130 K range. Although methanol acts as a suppressant to the direct vapor deposition of a type I clathrate with EO, nearly complete conversion of 115 K amorphous codeposits, to the crystalline mixed clathrate, occurs upon warming near 150 K. By contrast, the type II clathrate of THF shows an increased crystalline quality when methanol is included in the vapor deposits of the mixed clathrate hydrate at 130 K. The observation of the O---D stretch-mode band of weakly bonded CD3OD near 2575 cm−1 is part of the evidence that the methanol molecules are encaged. However, as shown theoretically by Tanaka, the clathrate hydrates of methanol, even when mixed with an ether help gas, are not stable structures but form at low temperatures because of kinetic factors, only to decompose in the 140–160 K range. Attempts to prepare a simple type I or type II clathrate hydrate of methanol have produced mixed results. Limited amounts of clathrate hydrate form during deposition but annealing does not result in complete conversion to crystalline clathrates, particularly for host : guest ratios of 17 : 1.  相似文献   

4.
Lattice dynamics simulation of several gas hydrates (helium, argon, and methane) with different occupancy rates has been performed using TIP3P potential model. Results show that the coupling between the guest and host is not simple as depicted by the conventional viewpoints. For clathrate hydrate enclosing small guest, the small cages are dominantly responsible for the thermodynamic stability of clathrate hydrates. And the spectrum of methane hydrate is studied compared with argon hydrate, then as a result, shrink effect from positive hydrogen shell is proposed.  相似文献   

5.
To provide improved understanding of guest–host interactions in clathrate hydrates, we present some correlations between guest chemical structures and observations on the corresponding hydrate properties. From these correlations it is clear that directional interactions such as hydrogen bonding between guest and host are likely, although these have been ignored to greater or lesser degrees because there has been no direct structural evidence for such interactions. For the first time, single‐crystal X‐ray crystallography has been used to detect guest–host hydrogen bonding in structure II (sII) and structure H (sH) clathrate hydrates. The clathrates studied are the tert‐butylamine (tBA) sII clathrate with H2S/Xe help gases and the pinacolone + H2S binary sH clathrate. X‐ray structural analysis shows that the tBA nitrogen atom lies at a distance of 2.64 Å from the closest clathrate hydrate water oxygen atom, whereas the pinacolone oxygen atom is determined to lie at a distance of 2.96 Å from the closest water oxygen atom. These distances are compatible with guest–water hydrogen bonding. Results of molecular dynamics simulations on these systems are consistent with the X‐ray crystallographic observations. The tBA guest shows long‐lived guest–host hydrogen bonding with the nitrogen atom tethered to a water HO group that rotates towards the cage center to face the guest nitrogen atom. Pinacolone forms thermally activated guest–host hydrogen bonds with the lattice water molecules; these have been studied for temperatures in the range of 100–250 K. Guest–host hydrogen bonding leads to the formation of Bjerrum L‐defects in the clathrate water lattice between two adjacent water molecules, and these are implicated in the stabilities of the hydrate lattices, the water dynamics, and the dielectric properties. The reported stable hydrogen‐bonded guest–host structures also tend to blur the longstanding distinction between true clathrates and semiclathrates.  相似文献   

6.
To understand host–guest interactions of hydrocarbon clathrate hydrates, we investigated the crystal structure of simple and binary clathrate hydrates including butane (n‐C4H10 or iso‐C4H10) as the guest. Powder X‐ray diffraction (PXRD) analysis using the information on the conformation of C4H10 molecules obtained by molecular dynamics (MD) simulations was performed. It was shown that the guest n‐C4H10 molecule tends to change to the gauche conformation within host water cages. Any distortion of the large 51264 cage and empty 512 cage for the simple iso‐C4H10 hydrate was not detected, and it was revealed that dynamic disorder of iso‐C4H10 and gauchenC4H10 were spherically extended within the large 51264 cages. It was indicated that structural isomers of hydrocarbon molecules with different van der Waals diameters are enclathrated within water cages in the same way owing to conformational change and dynamic disorder of the molecules. Furthermore, these results show that the method reported herein is applicable to structure analysis of other host–guest materials including guest molecules that could change molecular conformations.  相似文献   

7.
Semiconducting Group 14 clathrates are inorganic host–guest materials with a close structural relationship to gas hydrates. Here we utilize this inherent structural relationship to derive a new class of porous semiconductor materials: noble gas filled Group 14 clathrates (Ngx[M136], Ng=Ar, Kr, Xe and M=Si, Ge, Sn). We have carried out high‐level quantum chemical studies using periodic Local‐MP2 (LMP2) and dispersion‐corrected density functional methods (DFT‐B3LYP‐D3) to properly describe the dispersive host–guest interactions. The adsorption of noble gas atoms within clathrate‐II framework turned out to be energetically clearly favorable for several host–guest systems. For the energetically most favorable noble gas filled clathrate, Xe24[Sn136], the adsorption energy is ?52 kJ mol?1 per guest atom at the LMP2/TZVPP level of theory, corresponding to ?9.2 kJ mol?1 per framework Sn atom. Considering that a hypothetical guest‐free Sn clathrate‐II host framework is only 2.6 kJ mol?1 per Sn atom less stable than diamond‐like α‐Sn, the stabilization resulting from the noble gas adsorption is very significant.  相似文献   

8.
9.
Phase equilibria in the thiourea (host)-benzene (guest) binary system with clathrate formation were studied over the temperature range 260–460 K by physicochemical analysis methods. The stoichiometry and conditions of the existence of the 2.40(±0.02)(NH2)2CS · C6H6 compound, which incongruently decomposed at 358.7 K into rhombic thiourea and the guest component, were determined. The parameters of the Bravaisrhombohedral cell of the clathrate (space group R \(\bar 3\) c) were found to be a = 15.921(6), c = 12.417(8) Å, and V = 2725(5) Å3; d calc = 1.192 g/cm3 and d expt = 1.195(7) g/cm3. The packing of guest molecules in the rhombohedral host framework was modeled taking into account stoichiometry and unit cell parameters to show that benzene molecule planes were tilted with respect to the c channel axis with the formation of a monomolecular closely packed chain in the guest subsystem.  相似文献   

10.
Low-temperature, low-pressure studies of clathrate hydrates (CHs) have revealed that small ether and other proton-acceptor guests greatly enhance rates of clathrate hydrate nucleation and growth; rapid formation and transformations are enabled at temperatures as low as 110 K, and cool moist vapors containing small ether molecules convert to mixed-gas CHs on a subsecond time scale. More recently, FTIR spectroscopic studies of the tetrahydrofuran (THF)-HCN double clathrate hydrate revealed a sizable frequency shift accompanied by a four-fold intensification of the C-N stretch-mode absorption of the small cage HCN, behavior that is enhanced by cooling and which correlates precisely with similar significant changes of the ether C-O/C-C stretch modes. These temperature-dependent correlated changes in the infrared spectra have been attributed to equilibrated extensive hydrogen bonding of neighboring large- and small-cage guest molecules with water molecules of the intervening wall. An ether guest functions as a proton acceptor, particularly so when complemented by the action of a proton-donor (HCN)/electron-acceptor (SO(2)) small-cage guest. Because guest molecules of the classic clathrate hydrates do not participate in hydrogen bonds with the host water, this H-bonding of guests has been labeled "nonclassical". The present study has been enriched by comparing observed FTIR spectra with high-level molecular orbital computational results for guests and hydrogen-bonded guest-water dimers. Vibrational frequency shifts, from heterodimerization of ethers and water, correlate well with the corresponding observed classical to nonclassical shifts. The new spectroscopic data reveal that the nonclassical structures can contribute at observable levels to CH infrared spectra for a remarkable range of temperatures and choice of guest molecules. By the choice of guest molecules, it is now possible to select the abundance levels of nonclassical configurations, ranging from ~0 to 100%, for a given temperature. This ability is expected to hasten understanding of the role of guest-induced nonclassical structures in the acceleration or inhibition of the rates of CH formation and transformation.  相似文献   

11.
The crystal structure and phase transition of cubic structure II (sII) binary clathrate hydrates of methane (CH4) and propanol are reported from powder X‐ray diffraction measurements. The deformation of host water cages at the cubic–tetragonal phase transition of 2‐propanol+CH4 hydrate, but not 1‐propanol+CH4 hydrate, was observed below about 110 K. It is shown that the deformation of the host water cages of 2‐propanol+CH4 hydrate can be explained by the restriction of the motion of 2‐propanol within the 51264 host water cages. This result provides a low‐temperature structure due to a temperature‐induced symmetry‐lowering transition of clathrate hydrate. This is the first example of a cubic structure of the common clathrate hydrate families at a fixed composition.  相似文献   

12.
In this study, we present an extraordinary structural transition accompanying the occurrence of more than two coexisting clathrate hydrate phases in the double (CH4 + tetramethylammonium hydroxide (Me(4)NOH)) and (H2 + Me(4)NOH) ionic clathrate hydrates using solid-state NMR spectroscopy (high-powered decoupling and CP/MAS) and powder X-ray diffraction. It was confirmed that structure-I (sI) and structure-II (sII) hydrates coexist as the water concentration increases. In the Me(4)NOH-depleted region, the unique tuning phenomenon was first observed at a chemical shift of -8.4 ppm where relatively small gaseous CH4 molecules partly occupy the sII large cages (sII-L), pulling out large cationic Me(4)N+ that is considered to be strongly bound with the surrounding host lattices. Moreover, we note that, while pure Me(4)NOH.16H(2)O clathrate hydrates melted at 249 K under atmospheric pressure conditions, the double (CH4 + Me(4)NOH) clathrate hydrate maintained a solid state up to approximately 283 K under 120 bar of CH4 with a conductivity of 0.065 S cm(-1), suggesting its potential use as a solid electrolyte. The present results indicate that ionic contributions must be taken into account for ionic clathrate hydrate systems because of their distinctive guest dynamic behavior and structural patterns. In particular, microscopic analyses of ionic clathrate hydrates for identifying physicochemical characteristics are expected to provide new insights into inclusion chemistry.  相似文献   

13.
Complex dielectric permittivities of pure and KOH-doped (x = 1.8 x 10–4) tetrahydrofuran clathrate hydrates were measured in the temperature range 20–260 K and in the frequency range 20 Hz-1 MHz. The relaxation time of the water reorientational motion was found to decrease drastically as a result of the doping; e.g., the relaxation time of the doped sample was 10–9 times shorter than that of the pure sample at 70 K. The activation enthalpy of the motion was reduced to 7.4 kJ mol–1. On cooling the crystal, the value of decreased suddenly at the 62 K phase transition to the 2 value of the pure sample and at the same time disappeared. No dispersion effect due to the guest reorientation was observed below the transition. These data indicate that both the host and guest molecules become ordered or, at least, change their mobility drastically. In the pure sample, a relaxation phenomenon of 02 was found around the glass transition region. The relaxation times agreed well with those derived from the enthalpy of relaxation in a calorimetric study.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.  相似文献   

14.
Molecular dynamics (MD) simulations of structure II clathrate hydrates are performed under canonical (NVT) and isobaric–isothermal (NPT) ensembles. The guest molecule as a small help gas is xenon and gases such as cyclopropane, isobutane and propane are used as large hydrocarbon guest molecule (LHGM). The dynamics of structure II clathrate hydrate is considered in two cases: empty small cages and small cages containing xenon. Therefore, the MD results for structure II clathrate hydrates of LHGM and LHGM + Xe are obtained to clarify the effects of guest molecules on host lattice structure. To understand the characteristic configurations of structure II clathrate hydrate the radial distribution functions (RDFs) are calculated for the studied hydrate system. The obtained results indicate the significance of interactions of the guest molecules on stabilizing the hydrate host lattice and these results is consistent with most previous experimental and theoretical investigations.  相似文献   

15.
Decomposition curves of double ionic clathrate hydrates of tetrabutylammonium fluoride with helium, neon, hydrogen and argon were studied at pressures up to 800 MPa. Formation of double hydrates with helium, neon and hydrogen does not lead to any significant increase of the temperatures of decomposition of these hydrates; at high temperatures the hydrates may decompose even at lower temperatures than the hydrate of pure tetraalkylammonium salt does. Decomposition temperatures of double hydrates with argon in all cases were 4–8 °C higher in comparison with the decomposition temperature of ionic clathrate hydrates of tetrabutylammonium fluoride. We suppose that this behavior is caused by simultaneous effect of three factors on hydrate decomposition temperature: (1) partial filling of the small cavities in the framework of the hydrate with water molecules, (2) weakness of the van der Waals interactions between the gas molecules and the host water molecules, and (3) dissolution of helium, hydrogen and neon in the solution of tetrabutylammonium salt causing a decrease of melting temperatures of the hydrates formed from these solutions.  相似文献   

16.
We suggest two types of new amine-type sII formers: pyrrolidine and piperidine. These guest compounds fail to form clathrate hydrate structures with host water, but instead have to combine with light gaseous guest molecules (methane) for enclathration. First, two binary clathrate hydrates of (pyrrolidine + methane) and (piperidine + methane) were synthesized at various amine concentrations. 13C NMR and Raman analysis were done to identify the clathrate hydrate structure and guest distribution over sII-S and sII-L cages. XRD was also used to find the exact structure and corresponding cell parameters. At a dilute pyrrolidine concentration of less than 5.56 mol%, the tuning phenomenon is observed such that methane molecules surprisingly occupy sII-L cages. At the critical guest concentration of about 0.1 mol%, the cage occupancy ratio reaches the maximum of approximately 0.5. At very dilute guest concentration below 0.1 mol%, the methane molecules fail to occupy large cages on account of their rarefied distribution in the network. Direct-release experiments were performed to determine the actual guest compositions in the clathrate hydrate phases. Finally, we measured the clathrate hydrate phase equilibria of (pyrrolidine + methane) and (piperidine + methane).  相似文献   

17.
Phase equilibria in the thiourea (host)-bromoform (guest) binary system were studied by physicochemical analysis methods over the temperature range 270–455 K. The stoichiometry and stability region were determined for the channel-type compound CHBr3 · 2.40(2)(NH2)2CS; the compound was observed for the first time. When heated, the clathrate incongruently decomposed at 424.0 ± 0.8 K to rhombic thiourea and the guest component. The solubility isotherm of the thiourea-bromoform-acetic acid system was studied to find that the compound was thermodynamically stable at 293 K over the range of guest component concentrations 100–35 wt %. A decrease in its content in an equilibrium mother liquor resulted in the appearance of X-ray diffraction reflections of the initial host α polymorph. Rhombohedral cell parameters were determined (space group R-3c, a = 15.89(1) Å, c = 12.40(1) Å, V = 2711(6) Å3, d calcd = 2.000 g/cm3, and d expt = 1.98(2) g/cm3). The mode of packing of bromoform molecules was compared with the organization of the guest subsystem in inclusion compounds formed by the substances studied.  相似文献   

18.
The polymorphous transformation of the [CdPy 4(NO3)2]·2Py clathrate (Py is pyridine) at 221 K is investigated by analyzing the temperature dependences of the Raman spectra and the lattice parameters in the range 100–293 K The crystal structures of the high- and low-temperature modifications of the clathrate were determined. Above the transition point the clathrate crystallizes in space group Ccca (at 293 K: a = 12.360(4), b = 15.456(3), c = 16.931(3) å, V = 3234(1) å3, Z = 4, R = 0.050 for 879 reflections and 126 refined parameters). Below 221K the unit cell of the clathrate is transformed into the primitive cell, space group Pcca (at 215 K: a = 11.953(3), b = 15.129(3), c = 17.234(3) A, V = 3234(1) å3, Z =4, R = 0.057 for 1596 reflections and 210 refined parameters). In both modifications, the host complex involves four pyridine ligands and two monodentate trans-nitrato groups forming a distorted octahedron around the central atom. The guest pyridine molecules lie in the cavities of the molecular framework of the complex. As the clathrate is cooled, the a and b parameters decrease and the c parameter increases; at transition point, each of these parameters abruptly changes by about 0.2 A. The nitrate ligand undergoes ordering and inclination to the equatorial plane of the complex by 20?.  相似文献   

19.
The heat capacity of structure I ethylene oxide clathrate hydrate EO-6.86 H2O was measured in the temperature range 6–300 K with an adiabatic calorimeter. The temperature and enthalpy of congruent melting were determined to be (284.11 ± 0.02) K and 48.26 kJ mol–1, respectively. A glass transition related to the proton configurational mode in the hydrogen-bonded host was observed around 90 K. This glass transition was similar to the one observed previously for the structure II tetrahydrofuran hydrate but showed a wider distribution of relaxation times. The anomalous heat capacity and activation enthalpy associated with the glass transition were almost the same as those for THF-hydrate.Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.Author for correspondence.  相似文献   

20.
Syndiotactic polystyrene (sPS) forms a clathrate phase with a variety of compounds. Not only rigid molecules but also flexible molecules can be stored in the cavities of the clathrate phase. To clarify the adjustment mechanism of a flexible guest molecule to the sPS clathrate system, the host and guest structures were investigated by means of solid-state 13C NMR and Raman spectroscopy, and X-ray diffractometry for the sPS clathrates with a series of n-alkanes from n-hexane to n-decane. Although the 010 spacing of the host sPS lattice expanded slightly on going from n-hexane to n-heptane, it decreased markedly at n-octane and then increased gradually with the chain length of guest n-alkane. The conformational change of guest n-alkane molecules was involved in this anomalous change in the 010 spacing. Majority of the n-hexane and n-heptane molecules took extended chain structures in the clathrates, whereas all longer n-alkanes took bent chain structures. The mean-square displacement of hydrogen atoms in the clathrates was estimated by quasielastic neutron scattering experiments. It was confirmed that the host lattice contraction suppressed thermal motion of the clathrate system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号