首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Indium(III) chloride reacts with 12-c-4 to give the 1:1 adduct [InCl3·12-c-4]. This complex is a convenient In precursor to liquid clathrates. [InCl3·12-c-4] reacts with LiCl to form [Li·12-c-4] [InCl4]. When the reaction is carried out in the presence of an aromatic solvent such as toluene, a liquid inclusion complex forms readily. It has been determined that the C6H5CH3:[Li·12-c-4] [InCl4] ratio is 2. Alkylation of the 15-c-5 adduct of InCl3 with methyllithium yields [Li·15-c-5] [In(CH3)3Cl]. The salt fails to form inclusion complexes with aromatic molecules. This compound has been characterized using single crystal X-ray diffraction. The molecule belongs to the monoclinic space groupP21/n, witha=7.515(2),b=18.952(6), andc=13.938(7) Å, =95.12(3)° andD calc=1.43 g cm–3 for Z=4. Least squares refinement based upon 2348 observed reflections led to a finalR=0.039. Supplementary Data relevant to this paper have been deposited with the British Library under number SUP82054 (20 pages).  相似文献   

2.
RhTp(cod) ( 1 ) and RhBp(cod) ( 2 ), almost inactive in CH2Cl2, became good catalysts of phenylacetylene polymerization in ionic liquids ([bmim]Cl, [bmim]BF4: bmim = 1‐butyl‐3‐methylimidazolium, [mokt]BF4: mokt = 1‐methyl‐3‐oktylimidazolium, [bumepy]BF4: 1‐butyl‐4‐methylpyridinium) and in CH2Cl2 in the presence of tetraammonium halides ([R4N]X, R = Bu, Et; X = Cl, Br). The highest yields of polyphenylacetylene with catalyst 1 were obtained in [bmim]Cl at 65°C (64% after 2 h) and in [mokt]BF4 at 20°C (56% after 24 h). In alcohols (CH3OH, (CH3)2CHOH, (CH3)3COH) as solvents, up to 100% of the polymer was produced. When a mixture of an ionic liquid and CH3OH was used as the reaction medium, the polymer yield was similar to the yield achieved in an ionic liquid only, but the molecular weight increased remarkably. Tetraammonium salts, [R4N]X, are co‐catalysts for 1 , and the yield of the polymer increased in the order [Et4N]Br < [Bu4N]Br < [Et4N]Cl < [Bu4N]Cl. Polymers with molecular weights from 6900 to 38 800 Da were obtained with catalyst 2 in [R4N]Br or [R4N]Cl, whereas in ionic liquids ([bmim]Cl, [bmim]BF4) the corresponding molecular weights were higher, from 51 300 to 60 300 Da. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
The synthesis and full characterization of the sterically demanding ditopic lithium bis(pyrazol‐1‐yl)borates Li2[p‐C6H4(B(Ph)pzR2)2] is reported (pzR = 3‐phenylpyrazol‐1‐yl ( 3 Ph), 3‐t‐butylpyrazol‐1‐yl ( 3 tBu)). Compound 3 Ph crystallizes from THF as THF‐adduct 3 Ph(THF)4 which features a straight conformation with a long Li···Li distance of 12.68(1) Å. Compound 3 tBu was found to function as efficient and selective scavenger of chloride ions. In the presence of LiCl it forms anionic complexes [ 3 tBuCl] with a central Li‐Cl‐Li core (Li···Li = 3.75(1) Å).  相似文献   

4.
Influence of ionic liquids (ILs) addition (1?C50 wt%) on extraction efficiency of actinides by diphenyl(dibutyl)carbamoylmethylphosphine oxide (Ph2Bu2) from 3 M HNO3 has been studied. Am(III) distribution ratios in two-phase systems 0.1 M Ph2Bu2 in either DCE or CHCl3?C3 M HNO3 depending on the nature of additional ionic liquids: imidazolium-based ILs: [C4mim][PF6], [C4mim][BF4] and phosphonium-based ILs: PPF6, PBF4 and PCl were determined. The highest value of Am(III) extraction ratio change (1040) was found on addition of PPF6 to Ph2Bu2 in CHCl3. Extraction of Pu(IV) and U(VI) by 0.001 M Ph2Bu2 in the presence of [C4mim][PF6] in DCE, CHCl3 or meta-nitrobenzotrifluoride (NBTF) have been investigated. The greatest enhancement of extraction efficiency was observed using CHCl3, the least polar studied solvent. Using a mixture of conventional solvent and ionic liquid as a solvent for extractant enables one to increase distribution ratios and reduce viscosity of organic phase as compared with ionic liquid viscosity. The marked increase of Am(III), Pu(IV) and U(VI) extraction extent by Ph2Bu2 on addition of ionic liquids to the extent of 10 wt% permit one essentially to diminish amounts considerably more expensive carbamoylmethylphosphine oxide(the general name is CMPO) used in TRUEX process.  相似文献   

5.
The transfer hydrogenation of 2- and 4-alkylcyclohexanones (alkyl = Me or t-Bu) was studied in alkaline i-PrOH with catalyst systems prepared in situ from [Rh(COD)Cl]2 + phosphine (Ph3P, Bu3P). The stereoselectivity depends on the basicity of the phosphine and on the bulk and position of the alkyl substituent.  相似文献   

6.
Coordinatively Unsaturated Diruthenium Complexes: Synthesis and X‐Ray Crystal Structures of [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)], [Ru2(CO)4(μ‐X)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)] (X = Cl, S2CH) [Ru2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 1 ) reacts in benzene with elemental sulfur to the addition product [Ru2(CO)4(μ‐H)(μ‐S)(μ‐PtBu2)(μ‐dppm)] ( 2 ) (dppm = Ph2PCH2PPh2). 2 is also obtained by reaction of 1 with ethylene sulfide. The reaction of 1 with carbon disulfide yields with insertion of the CS2 into the Ru2(μ‐H) bridge the dithioformato complex [Ru2(CO)4(μ‐S2CH)(μ‐PtBu2)(μ‐dppm)] ( 3 ). Furthermore, 1 reacts with [NO][BF4] to the complex salt [Ru2(CO)4(μ‐NO)(μ‐H)(μ‐PtBu2)(μ‐dppm)][BF4] ( 4 ), and reaction of 1 with CCl4 or CHCl3 affords spontaneously [Ru2(CO)4(μ‐Cl)(μ‐PtBu2)(μ‐dppm)] ( 5 ) in nearly quantitative yield. The molecular structures of 2 , 3 and 5 were confirmed by crystal structure analyses.  相似文献   

7.
The fast atom bombardment (FAB) mass spectra of a series of hexamethylphosphoramide (HMPA) adducts of phenyltin(IV) halides [Ph3SnX · HMPA (X = Cl, Br, I); Ph2SnX2 · HMPA (X = Br, I); Ph2SnX2 · 2HMPA (X = Br, I)] and phenyllead(IV) halides [Ph3PbX · HMPA (X = Cl, Br, I); Ph2PbX2 · HMPA (X = Br, I) and Ph2PbX2 · 2HMPA (X = Cl, Br, I)] in a glycerol/HMPA matrix have been investigated, and compared with their electron impact (EI) spectra. No parent ions are observed in either FAB or EI, but in the FAB spectra there is a much higher proportion of metal-containing ions which also have and HMPA molecule attached. This is the case even in a HMPA-free matrix such as p-nitrophenyloctyl ether (NPOE). The main difference in the FAB spectra is the preferential loss of halide compared to phenyl, the reverse of that observed in the EI spectra. The same trend is observed for the IE and FAB spectra of the uncomplexed organometallics. Diphenyltin dihalide · HMPA adducts in the glycerol/HMPA matrix form Ph3Sn species which are absent when NPOE is used as the matrix liquid.  相似文献   

8.
Levulinic acid (LA) is an industrially important product that can be catalytically valorized into important value-added chemicals. In this study, hydrothermal conversion of glucose into levulinic acid was attempted using Brønsted acidic ionic liquid catalyst synthesized using 2-phenyl-2-imidazoline, and 2-phenyl-2-imidazoline-based ionic liquid catalyst used in this study was synthesized in the laboratory using different anions (NO3, H2PO4, and Cl) and characterized using 1H NMR, TGA, and FT-IR spectroscopic techniques. The activity trend of the Brønsted acidic ionic liquid catalysts synthesized in the laboratory was found in the following order: [C4SO3HPhim][Cl] > [C4SO3HPhim][NO3] > [C4SO3HPhim][H2PO4]. A maximum 63% yield of the levulinic acid was obtained with 98% glucose conversion at 180 °C and 3 h reaction time using [C4SO3HPhim][Cl] ionic liquid catalyst. The effect of different reaction conditions such as reaction time, temperature, ionic liquid catalyst structures, catalyst amount, and solvents on the LA yield were investigated. Reusability of [C4SO3HPhim][Cl] catalyst up to four cycles was observed. This study demonstrates the potential of the 2-phenyl-2-imidazoline-based ionic liquid for the conversion of glucose into the important platform chemical levulinic acid.  相似文献   

9.
Structural Chemistry of the Alkyl- and Arylhaloarsenates(III) [Me2As2Cl5], [RAsCl3], [R2As2Br6]2– (R = Me, Et, Ph) and [Ph2AsX2] (X = Cl, Br) The alkyl- and arylhaloarsenates(III) [Ph4P][Me2As2Cl5] ( 1 ), [Ph4P][RAsCl3] (R = Me, Et, Ph, 2 – 4 ), [Me3PhN][PhAsCl3] ( 5 ), [Ph4P]2[R2As2Br6] (R = Me, Et, Ph, 6 – 8 ), [n-Pr4N][Ph2AsCl2] ( 9 ) and [n-Bu4N][Ph2AsBr2] ( 10 ) have been prepared and their structures established by X-ray diffraction. In contrast to the chloroarsenates(III) 2 – 5 , which all contain isolated ψ-trigonal bipyramidal anions [RAsCl3], the analogous bromoarsenates(III) 6 – 8 exhibit dimeric structures. Whereas the trans sited As–Cl distances in 2 and 3 are very similar a pronounced degree of asymmetry is apparent for the Cl–As–Cl three-centre bonds in 4 and 5 [2.396(1) and 2.602(1) Å in 5]. In 6 and 7 Ci symmetry related RAsBr2 units are connected through long As…Br bonds [2.926(1) and 3.116(2) Å in 6 ]. The bromophenylarsenate(III) anion of 8 which contains two effectively undistorted ψ-trigonal bipyramids [PhAsBr3] associated by weak As…Br interactions [3.117(2) Å]. In view of its very long bridging As…Cl distances the [Me2As2Cl5] anion in 1 can, as 6 an 7 , be regarded as two MeAsCl2 molecules weakly linked through a chloride ion.  相似文献   

10.
The new molybdenum cyanonitrosyl complexes, R2[Mo(NO)(CN)5]·2H2O (R = Ph4P and Bu4N) and [Mo(NO)(CN)3(L-L)]·H2O [L-L =  相似文献   

11.
On the Reaction of Trifluorohalomethanes with Phosphanes The reactions of trifluorohalomethanes CF3X (X = Cl, Br, I) with Ph3P, Bu3P, (Me2N)3P, and (Et2N)3P were investigated. CClF3 does not react. In the reactions of CBrF3 and CF3I with Bu3P in acetonitrile trifluorophosphonium salts, [Bu3PCF3]X (X = Br, I), are formed, whereas gaseous CF3I and Bu3P yield Bu2PCF3. Depending on the reaction conditions the aminophosphanes form either [(R2N)3PX]X (R = Me, Et; X = Br, I) and CF3H or [(R2N)3PCF3]X.  相似文献   

12.
Reaction of Ph3GeLi with [Et4N][HFe3(CO)11] affords the new carbonylferrate salt [Et4N][Ph3GeFe(CO)4] and the same reaction provides an alternative route to the known silicon and tin analogs. Protonation of [Et4N][Ph3GeFe(CO)4] with HCl in ether-THF forms the air-sensitive, thermally rather unstable cis-Ph3GeFeH(CO)4. The latter protonates chloride ions in dichloromethane.  相似文献   

13.
Reaction of [Ru(η6p‐cymene)Cl2]2 with two equivalents of [Ph4P][Cl] in CH2Cl2 yields [Ph4P][Ru(η6p‐cymene)Cl3], containing a trichlororuthenate(II) anion. In solution, an equilibrium between the product and [Ru(η6p‐cymene)Cl2]2 is observed, which in CDCl3 is nearly completely shifted to the dimer, whereas in CD2Cl2 essentially a 1:1‐mixture of the two ruthenium species is present. Crystallization from CH2Cl2/pentane yielded two different crystals, which were identified by X‐ray analysis as [Ph4P][Ru(η6p‐cymene)Cl3] and [Ph4P][Ru(η6p‐cymene)Cl3]·CH2Cl2.  相似文献   

14.
Synthesis and characterisation of mixed halophenylbismuthates(III) with a general formula Bu4N[PhBiX2Y] where X = Cl or Br; Y = Cl, Br or I; X ≠ Y are reported. The molecular structures of Bu4N[PhBiCl2Br] ( 1 ) and Bu4N[PhBiBr2I] ( 2 ) are determined by X‐ray crystallography. In mixed halophenylbismuthates, the anion exists as a dimer with bismuth in a distorted square pyramidal coordination. In the dimer the two phenyl groups occupy anti position to each other thereby minimising the repulsion.  相似文献   

15.
The Tetracyanoborates M[B(CN)4], M = [Bu4N]+, Ag+, K+ The tetracyanoborate anion is prepared for the first time as the tetrabutylammonium salt by the reaction of [NBu4]BX and BX3 (X = Br, Cl) in toluene with KCN. After purification and recrystallization of the product from CHCl3 colorless and needle size single crystals of [Bu4N][B(CN)4] are formed. After metathesis with AgNO3 the silver salt and subsequently with KBr the potassium salt is prepared. The three salts are characterized by single crystal X‐ray diffraction (Ag[B(CN)4] P 43m, a = 5.732(1) Å, V = 188.3 Å3, Z = 1, R1 = 0.75%; K[B(CN)4] I41/a, a = 6.976(1), c = 14.210(3) Å, V = 691.5 Å3, Z = 4, R1 = 1.90%; [Bu4N][B(CN)4] Pnna, a = 17.765(3), b = 11.650(2), c = 11.454(2) Å, V = 2370.5 Å3, Z = 4, R1 = 6.09%) and by NMR‐, IR‐, Raman‐ as well by UV‐spectroscopy.  相似文献   

16.
The in situ synthesis of ethylene‐co‐norbornene copolymers/multi‐walled carbon nanotubes (MWNTs) nanocomposites was achieved by rare‐earth half‐sandwich scandium precursor [Sc(η5‐C5Me4SiMe3)(η1‐CH2SiMe3)2(THF)] (1) activated by [Ph3C][B(C6F5)4], through a non‐PFT (Polymerization Filling Technique) approach. MWNTs nanocomposites with low aluminum residue were obtained with excellent yields even though small amounts of triisobutylaluminium were needed as scavenger to prevent catalyst poisoning by MWNT impurities. MWNT bundles were disaggregated and highly coated with Poly(ethylene‐co‐norbornene) [P(E‐co‐N)] as revealed by transmission electron microscopy. Interestingly, P(E‐co‐N) copolymers showed Tg over 130 °C as well as norbornene content over 50 mol %; both values were higher than those obtained by the cationic active species in 1 /[Ph3C][B(C6F5)4]. A series of copolymerization reactions by 1 /[Ph3C][B(C6F5)4]/AliBu3 without MWNTs produced copolymers with the same unexpected features. The NMR analysis revealed the presence of rac‐ENNE and rac‐ENNNE sequences. Thus, AliBu3 changed the stereoirregular alternating copolymer microstructure produced by 1 /[Ph3C][B(C6F5)4]. We conclude that AliBu3 is not only a scavenger for CNT impurities, but it reacts with the THF ligand to give coordinatively unsaturated active species. Finally, P(E‐co‐N)/MWNT masterbatches were mixed with commercial TOPAS to produce cyclic olefin copolymer nanocomposites with excellent dispersion of filler. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5709–5719, 2009  相似文献   

17.
Metal Sulfur Nitrogen Compounds 18. Reaction Products of S7NH with Nickel and Copper Salts. Preparation and Structures of the Complexes [Ch34N][Ni(S3N)(CN)2], [(C6H5)4As][Cu(S3N)2], and [(C6H5)4AS][Cu(S3N)Cl]. In the presence of MOH (M = K, [(CH3)4N]), S7NH reacts with Ni(CN)2 to yield, besides the three-nuclear complex M[(S3NNi)3S2], the new mononuclear complex M[Ni(S3N)(CN)2]. The [(CH3)4N]+ salt is monoclinic, C2/m, a = 19.303(9), b =6.941(3), c=16.309(10) Å, β = 144.510(2), Z = 4. The [Ni(S3N)(CN)2]- anion is planar, Ni being coordinated by one S3N? chelate ligand and by two CN? ions. From the reaction of CuCI2, S7NH, and [Ph4As]OH result the salts [Ph4As][Cu(S3N)2] or [Ph4As][Cu(S3N)Cl], depending on the reaction conditions. [Ph4As][Cu(S3N)2] is triclinic, P&1macr;, a = 7.073(3), b = 11.742(4), c = 16.439(6) Å α = 91.08°(3), β = 99.01°(3), γ = 91.58°(3), Z = 2. Two S3N? chelate ligands coordinate to CuI in a distorted tetrahedral arrangement. [Ph4As][Cu(S3N)Cl] is monoclinic, C2/c, a = 17.174(6), b = 13.650(5), c = 21.783(5) Å β = 100.45°(2), Z = 8. CuI is coordinated by one S3N? chelate ligand and one C1?, resulting in a trigonal planar environment.  相似文献   

18.
The role of intramolecular metal???π‐arene interactions has been investigated in the solid‐state structures of a series of main group compounds supported by the bulky amide ligands, [N(tBuAr)(SiR3)]? (tBuAr=2,6‐(CHPh2)2‐4‐tBuC6H2, R=Me, Ph). The lithium and potassium amide salts showed different patterns of solvation and demonstrated that the SiPh3 substituent is able to be involved in stabilizing the electrophilic metal. These group 1 metal compounds served as ligand transfer reagents to access a series of bismuth(III) halides. Chloride extraction from Bi(N{tBuAr}{SiPh3})Cl2 using AlCl3 afforded the 1:1 salt [Bi(N{tBuAr}{SiPh3})Cl][AlCl4]. This was accompanied by a significant rearrangement of the stabilizing π‐arene contacts in the solid‐state. Attempted preparation of the corresponding tetraphenylborate salt resulted in phenyl‐transfer and generation of the neutral Bi(N{tBuAr}{SiPh3})(Ph)Cl.  相似文献   

19.
The following reactions have been accomplished: 2(CF3)2NO· + Ph2CCO → Ph2C[ON(CF3)2]CO2N(CF3)2 → (on hydrolysis) Ph2C[ON(CF3)2]CO2H; 2 (CF3)2NO· + Ph2CHCOX → (CF3)2NOH + Ph2C[ON(CF3)2]COX (X  OH, Cl,NH2).  相似文献   

20.
Crystal Structures of TMEDA Adducts and of Salts with Protonated TMEDA Molecules The reaction of TMEDA with two equivalents of [BH3(SMe2)] in toluene at 20 °C gives the adduct [TMEDA(BH3)2] ( 1 ). A similar reaction of pyrrolidine with [BH3(SMe2)] in a molar ratio of 1:1 leads to the adduct [pyrrolidine(BH3)] ( 2 ). TMEDA can be introduced into the coordination sphere of In3+ by the treatment of InI3 with TMEDA in toluene to give the complex [InI(TMEDA)] ( 3 ). The salt [HTMEDA]I ( 4 ), containing a mono‐protonated TMEDA molecule, is the result of the reprotonation of [NH4]I and TMEDA in toluene at 20 °C. The salts [H2TMEDA]—[InCl4(TMEDA)]2 ( 5 ) and [H2TMEDA][InCl5(THF)] ( 6 ) are formed in the reaction mixtures TMEDA/toluene/InCl3/HCl and TMEDA/toluene/THF/InCl3/HCl, respectively, whereupon 6 was characterized more closely. Crystals of [In5I6(OH)(TMEDA)4]I·2, 5toluene ( 7 ·2.5toluene) can be obtained after treatment of InI3 with non‐dried TMEDA; 4 was identifed as by‐product. 1 — 7 ·2.5toluene were partially investigated by NMR methods and vibrational spectroscopy. In all cases a characterization by single crystal X‐ray diffraction was performed. According to this, all nitrogen atoms in 1 and 2 are coordinated by BH3 groups leading to a distorted tetrahedral environment at the nitrogen and the boron atoms. In 3 a distorted trigonal‐bipyramidal coordination sphere at the In3+ is present. The apical positions are occupied by I3 and N3. Strong N‐H···N bridges, running along [001] is the feature in 4 ; the I—‐Ions are not involved into the system of H‐bridges. A ion triple, [H2TMEDA][InCl4(TMEDA)]2, hold together by bifurcated H‐bridges is the dominating structural motif in 5 , whereas alternation bifurcated and linear H‐bridges, leading zu a zig‐zag chain along [100], is the build‐up principle of 6 . In 7 ·2.5toluene a complex In5O8 skeleton was formed, consisting of a virtual corner‐connected doubled heterocubane. At every heterocubane a corner, occupied by a metal ion, is missing. The coordination spheres of the In atoms of the complex cation are completed by TMEDA molecules and iodide ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号