首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Geometric distortion in MR imaging predominantly arises from the inhomogeneity of the static field and the nonlinearity of the gradients. It is the purpose of this paper to analyse the object and machine related contributions to geometric distortion in order to determine which corrections are necessary for attaining a specified precision. System related imperfections were measured by systematic variation of the strength, direction, and polarity of the read-out gradient in imaging experiments on a grid of cylindrical sample tubes. For the 1.5-T system used in this study, static field related errors up to 7 mm and gradient related errors up to 4 mm were observed (midcoronal plane, FOV 400-mm, G-read between 0.5 and 3.0 mT/m). Field related errors were shown to be inversely proportional to gradient strength, whereas gradient related errors turned out to be virtually independent of gradient strength. It therefore seems recommendable to always apply the strongest available selection and read-out gradients when geometric fidelity is given preference to signal-to-noise considerations. Correction of system related geometric distortions in MR images can readily be performed by table lookup. Object-induced distortions of the gradient fields were studied by experiments on a grid of sample tubes immersed into a cylindrical water bath of variable saline concentration. These experiments revealed a negligible influence of the object on the gradient error distribution, and lead to the conclusion that correction for the nonlinearity of the gradients only requires the application of system dependent correction factors. Object-related distortions of B0 were studied by conventional SE and fat-suppressed IR experiments on phantoms and human subjects. In these experiments the polarity of the read-out gradient was reversed. Subtraction images showed significant object-induced inhomogeneities of the static field at tissue-air interfaces and in the immediate vicinity of the object being imaged. A first attempt to correct for object related B0 inhomogeneities was made by contour analysis of the source images. At present this correction still has to be done manually.  相似文献   

2.
Pulsed gradient spin echo (PGSE) experiments can be used to measure the probability distribution of molecular displacements. In homogeneous samples this reports on the molecular diffusion coefficient, and in heterogeneous samples, such as porous media and biological tissue, such measurements provide information about the sample's morphology. In heterogeneous samples however background gradients are also present and prevent an accurate measurement of molecular displacements. The interference of time independent background gradients with the applied magnetic field gradients can be removed through the use of bipolar gradient pulses. However, when the background gradients are spatially non-uniform molecular diffusion introduces a temporal modulation of the background gradients. This defeats simple bipolar gradient suppression of background gradients in diffusion related measurements. Here we introduce a new method that requires the background gradients to be constant over coding intervals only. Since the coding intervals are typically at least an order of magnitude shorter than the storage time, this new method succeeds in suppressing cross-terms for a much wider range of heterogeneous samples.  相似文献   

3.
When an electron is scattered by a tightly focused laser beam in vacuum, the intensity gradient is a critical factor to influence the electron dynamics. In this paper, we have further investigated its influence upon the electron high-harmonic generation (HHG) by treating the spacial gradient of the laser intensity as a ponderomotive potential. Based upon perturbative quantum electrodynamics calculations, it has been found that the main effect of the intensity gradient is the broadening of the originally line HHG spectra. A one-to-one relationship can be built between the beam width and the corresponding line width. Hence, this finding may provide us a promising way to measure the beam width of intense lasers in experiments. In addition, for a laser pulse, we have also studied the different influences from transverse and longitudinal intensity gradients upon HHG.  相似文献   

4.
While many optimization and control methods for stochastic processes require gradient information from the process of interest, obtaining gradient information from experiments is prohibitively expensive and time-consuming. As a result, such information is often obtained from stochastic process simulations. Computing gradients efficiently and accurately from stochastic simulations is challenging, especially for simulations involving computationally expensive models with significant inherent noise. In this work, we analyze and characterize the applicability of two gradient estimation methods for kinetic Monte Carlo simulations: finite differencing and likelihood ratio. We developed a systematic method for choosing an optimal perturbation size for finite differencing and discuss, for both methods, important implementation issues such as scaling with respect to the number of elements in the gradient vector. Through a series of numerical experiments, the methods were compared across different time and size regimes to characterize the precision and accuracy associated with each method. We determined that the likelihood ratio method is appropriate for estimating gradients at short (transient) times or for systems with small population sizes, whereas finite differencing is better-suited for gradient estimation at long times (steady state) or for systems with large population sizes.  相似文献   

5.
Accurate diffusion measurements with pulsed gradient NMR are hampered by cross-terms of the diffusion-weighting and background gradients. For experiments based on a stimulated echo pulse sequence, that is preferred for samples with a T2 short compared to the diffusion time, a diffusion-weighting scheme has been presented that avoids these cross-terms in each of the en- and decoding periods separately. However, this approach suffers from a reduced diffusion-weighting efficiency because the two gradients applied in each of the periods have effectively opposite polarities leading to a partial cancellation. An extension of this scheme is presented that involves an additional gradient pulse in each period and delivers an improved diffusion-weighting efficiency without sacrificing the cross-term compensation. Analytical expressions for the gradient pulse lengths and amplitudes are given for arbitrary timing parameters. MR measurements with artificial (switched) background gradients were performed to test the cross-term compensation capability of the proposed extension. The results show that considerably higher q and b values can be achieved with the extension without changing the timing parameters. The MR measurements yielded identical diffusion coefficients without, with the same, and with different background gradients in the en- and decoding periods demonstrating the cross-term compensation of the presented approach.  相似文献   

6.
The effects of macroscopic background gradients due to susceptibility differences at the sample interfaces and of radiation damping on pulsed-gradient spin-echo (PGSE) experiments are examined. Both phenomena can lead to the seemingly strange effect of the echo signal growing as the gradient strength increases at low applied gradient strengths. For a freely diffusing species, background gradients manifest themselves as slight concave or convex inflections in the linearized PGSE attenuation curve, depending on the polarity of the applied gradient. The various means of overcoming macroscopic background gradient problems, including bipolar gradients, and their efficacy are examined experimentally and discussed. The effects of radiation damping can also result in the attenuation curve being nonlinear but, different from the effect of background gradients, the nonlinearity does not change with the polarity of the applied gradient. The vulnerability of the stimulated echo-based PGSE sequence and variations of Hahn-based PGSE sequences is investigated. Both background gradients and radiation damping have serious implications for accurate diffusion measurement determination.  相似文献   

7.
Diffusion imaging gradients serve to spectrally filter the temporally evolving diffusion tensor. In this framework, the design of diffusion sensitizing gradients is reduced to the problem of adequately sampling q-space in the spectral domain. The practical limitations imposed by the requirement for delta-function type diffusion-sensitizing gradients to adequately sample q-space, can be relaxed if these impulse gradients are replaced with chirped oscillatory gradients. It is well known that in many systems of interest, dispersion of velocity will itself produce a peak in the velocity correlation function near w=0, while restricted diffusion will manifest itself in the dispersion spectrum at higher frequencies. In this paper, chirped diffusion-sensitizing gradients are proposed and analytically shown to yield an efficient sampling of q-space in a manner that asymptotically approaches that using delta-function diffusion-sensitizing gradient. The challenge is the consequent reduction in diffusion sensitivity as one probes higher frequency dynamics. This problem is addressed by restricting the gradient power to a spectral bandwidth corresponding to the diffusion spectral range of the underlying restrictive geometry. Simultaneous imaging of diffusion and flow at microscopic resolution and at temporally resolvable diffusion time scales thus becomes possible in vivo. Simulations and experiments validate the proposed approach.  相似文献   

8.
The generalized magic asymmetric gradient stimulated echo (generalized MAGSTE) sequence compensates background gradient cross-terms and can be adjusted to asymmetric timing boundary conditions which for instance are present in echo-planar MR imaging. However, its efficiency is not optimal because one of the two diffusion-weighting gradients applied in each interval usually must have a reduced amplitude to ensure the desired cross-term compensation. In this work, a modification of generalized MAGSTE is investigated where this gradient pulse is replaced by two gradient pulses with full amplitude but opposite polarities. It is shown that with these bipolar gradients (i) the sequence retains the cross-term compensation capability for an appropriate choice of the gradient pulse durations and (ii) the diffusion-weighting efficiency is improved, i.e. higher k and b values can be achieved without prolonging the echo time. These results are confirmed in MR imaging experiments on phantoms and in vivo in the human brain at 3 T using spin-echo and echo-planar MR imaging. In the examples shown, the b value could be increased between about 30% and 200% when using the bipolar gradient pulses. Thus, bipolar gradients may help to improve the applicability of the generalized MAGSTE sequence.  相似文献   

9.
To relax the high-speed requirement imposed on the gradient system used in solid-state proton imaging, we propose two simple modifications of the magic echo imaging sequence, TREV-16TS. In the first modification, the applied gradient is inverted in the middle of the RF irradiation; the second modification utilizes a sinusoidal gradient synchronized with the RF sequence. It is estimated by experiments that as long as the RF amplitude is at least about 10 times stronger than the resonance offset induced by the gradient, the spatial resolution is not degraded significantly by the line narrowing deterioration due to the gradient applied during the on-resonance RF irradiation. The modifications allow commercially available standard gradients to be used for the magic echo imaging of solids.  相似文献   

10.
A mechanical analysis is done to find the evolution of the interface profile between binary immiscible fluids induced by a three-dimensional orthogonal magnetic field gradient.In the experiments,the changes of the interface profile between four groups of binary immiscible fluids are investigated under the same horizontal magnetic field gradients.The binary immiscible fluids are made of benzene and other liquids,like CuSO4,Fecl3,FeSO4 or Cucl2 aqueous solutions.In addition,the interface profile between the benzene and CuSO4 aqueous solution is examined under different horizontal magnetic field gradients.The experimental results are consistent with the theoretical analysis.This study explains the enhanced Moses effect from a mechanics standpoint.Furthermore,a new method for susceptibility measurement is proposed based on this enhanced Moses effect.  相似文献   

11.
The influence of finite length gradient pulses on NMR diffusion experiments on liquids confined to diffuse between two parallel planes is investigated. It is experimentally verified that the pore size decreases when determined using finite gradient pulses if the results are analyzed within the short gradient pulse approximation. The results are analyzed using the matrix formulation. The observed minima in the echo decay profiles are considerably less sharp than theoretical analysis would indicate and we suggest that this is due to the presence of a distribution of pore sizes in the sample. In addition, effects due to the presence of background gradients are discussed. It is argued that effects due to the finite length gradient pulses are relatively minor and in realistic applications the effects due to inhomogeneities in pore sizes and effects due to background gradients will constitute more serious problems in pore size determinations by means of NMR diffusometry.  相似文献   

12.
NMR diffusion–diffraction patterns observed in compartments in which restricted diffusion occurs are a useful tool for direct extraction of compartment sizes. Such diffusion–diffraction patterns may be observed when the signal intensity E(q,?) is plotted against the wave-vector q (when q = (2π)− 1γδG). However, the smaller the compartment sizes are, the higher are the q-values needed to observe such diffractions. Moreover, these q-values should be achieved using short gradient pulses requiring extremely strong gradient systems. The angular double-pulsed-field gradient (d-PFG) NMR methodology has been proposed as a tool to extract compartment sizes using relatively low q-values. In this study, we have used single-PFG (s-PFG) NMR and angular d-PFG NMR to characterize the size of microcapillaries of about 2 ± 1 μm in diameter. We found that these microcapillaries are characterized by relatively strong background gradients that completely masked the effects of the microscopic anisotropy (μA) of the sample, resulting in a completely unexpected E(φ) profile in the angular d-PFG NMR experiments. We also show that bipolar angular d-PFG NMR experiments can largely suppress the effect of these background gradients resulting in the expected E(φ) profile from which the compartment dimensions could be obtained with relatively weak gradient pulses. These results demonstrate that the above methodology provides a quick, reliable, non-invasive means for estimating small pore sizes with relatively weak gradients in the presence of large magnetic susceptibility.  相似文献   

13.
The use of a Hartmann wave-front sensor to accurately measure the line-integrated electron density gradients formed in laser-produced and z-pinch plasma experiments is examined. This wave-front sensor may be used with a soft-x-ray laser as well as with incoherent line emission at multikilovolt x-ray energies. This diagnostic is significantly easier to use than interferometery and moiré deflectometry, both of which have been demonstrated with soft-x-ray lasers. This scheme is experimentally demonstrated in the visible region by use of a Shack-Hartmann wave-front sensor and a liquid-crystal spatial light modulator to simulate a phase profile that could occur when an x-ray probe passes through a plasma. The merits of using a Hartmann sensor include a wide dynamic range, broadband or low-coherence-length light capability, high x-ray efficiency, two-dimensional gradient determination, multiplexing capability, and experimental simplicity. Hartmann sensors could also be utilized for wavelength testing of extreme-ultraviolet lithography components and x-ray phase imaging of biological specimens.  相似文献   

14.
In this paper, we summarize our recent experimental and theoretical works on observation and control of scroll wave (SW) turbulence. The experiments were conducted in a three-dimensional Belousov-Zhabotinsky reaction-diffusion system with chemical concentration gradients in one dimension. A spatially homogeneous external forcing was used in the experiments as a control; it was realized by illuminating white light on the light sensitive reaction medium. We observed that, in the oscillatory regime of the system, SW can appear automatically in the gradient system, which will be led to spatiotemporal chaos under certain conditions. A suitable periodic forcing may stabilize inherent turbulence of SW. The mechanism of the transition to SW turbulence is due to the phase twist of SW in the presence of chemical gradients, while modulating the phase twist with a proper periodic forcing can delay this transition. Using the FitzHugh-Nagumo model with an external periodic forcing, we confirmed the control mechanism with numerical simulation. Moreover, we also show in the simulation that adding temporal external noise to the system may have the same control effect. During this process, we observed a new state called "intermittent turbulence," which may undergo a transition into a new type of SW collapse when the noise intensity is further increased. The intermittent state and the collapse could be explained by a random process.  相似文献   

15.
A method for rotating-frame NMR diffusometry in the fringe-fieldB1gradients of solenoid RF coils in standard probeheads is described. A 5 mm RF solenoid coil, for instance, producesB1gradients of up to 3.3 T/m. The gradients can be enhanced by so-called flux concentrators so that values comparable to those common in laboratory-frame PGSE experiments should be feasible. The principle of the technique is to produce azmagnetization grid with the aid of aB1gradient pulse. The wavenumber of the grid is varied by the length of the preparation pulse. After a certain diffusion delay, the grid is rendered as an image using a rapid rotating-frame-imaging technique. TheB1gradient need not be constant. Diffusion coefficients are rather evaluated locally based on the localB1gradients. Single-transient diffusion experiments in toroid resonators, and the employment of theB1gradients produced by the skin effect of conducting materials are suggested.  相似文献   

16.
In this paper, results of applying a non-uniform magnetic field on a ferrofluid (kerosene and 4 vol% Fe3O4 ) flow in a vertical tube have been reported. The hydrodynamics and thermal behavior of the flow are investigated numerically using the two phase mixture model and the control volume technique. Two positive and negative magnetic field gradients have been examined. Based on the obtained results the Nusselt number can be controlled externally using the magnetic field with different intensity and gradients. It is concluded that the magnetic field with negative gradient acts similar to Buoyancy force and augments the Nusselt number, while the magnetic field with positive gradient decreases it. Also with the negative gradient of the magnetic field, pumping power increases and vice versa for the positive gradient case.  相似文献   

17.
The electromagnet provides a favorable environment for certain applications of NMR microscopy. These include plant imaging experiments and measurements of slow molecular diffusion, where high magnetic field gradients for the pulsed gradient spin echo (PGSE) technique are required. In this paper, two probes designed specifically for these two applications are described. In the first case, the open space within the probe has been maximized in order to incorporate environmental support systems for the plant, while in the second the smallest possible PGSE gradient coil former has been used to maximize the gradient strength. Examples are given of Dynamic NMR Microscopy experiments on a castor bean stem and on poly(ethylene oxide)/water solutions under shear thinning conditions.  相似文献   

18.
Acoustic noise produced during single point imaging (SPI) experiments was modulated by changes in the spatial encoding gradients. Parameters of both linear and sine-shaped gradient ramps were modified to minimize the acoustic noise levels. Acoustic noise measurements during SPI were measured on three different gradient systems and revealed that for small gradient-bore systems a considerable acoustic noise reduction of more than 20 dB can easily be achieved. SPI in conjunction with an optimized gradient waveform can be a superb alternative to the previously introduced single point ramped imaging with T(1) enhancement (SPRITE) method when sound levels and overheating of gradients are a concern.  相似文献   

19.
The effect of flow shear on turbulent transport in tokamaks is studied numerically in the experimentally relevant limit of zero magnetic shear. It is found that the plasma is linearly stable for all nonzero flow shear values, but that subcritical turbulence can be sustained nonlinearly at a wide range of temperature gradients. Flow shear increases the nonlinear temperature gradient threshold for turbulence but also increases the sensitivity of the heat flux to changes in the temperature gradient, except over a small range near the threshold where the sensitivity is decreased. A bifurcation in the equilibrium gradients is found: for a given input of heat, it is possible, by varying the applied torque, to trigger a transition to significantly higher temperature and flow gradients.  相似文献   

20.
A method for imaging of spectral parameters of solid samples is presented. The detected NMR signals are Jeener-Broekaert echoes. No read field gradient is applied during the acquisition, so that wide-line spectral parameters can be evaluated and be transferred to image contrasts. On the other hand, multipulse line-narrowing sequences can be applied during the echoes in order to obtain high-resolution spectra. The imaging principle is a pure phase-encoding Fourier technique in two or three dimensions. The phase-encoding gradients are active in the interval between the first two pulses of the Jeener-Broekaert three-pulse sequence. Between the second and the third pulse, the information is conserved in the dipolar (or quadrupolar) order state which is insensitive to field gradients and governed by the relatively slow dipolar (or quadrupolar) relaxation. This interval therefore can be chosen to be long enough to switch the gradients off. The third pulse “reads” the information of the spin-state order and produces an echo under homogeneous field conditions. In the case of two-dimensional imaging, a slice is preselected prior to the whole Jeener-Broekaert sequence by the aid of a LOSY slice-selection pulse. Test experiments are reported, and applications to polymer and biological materials are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号