首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combination of equimolar amounts of LiOAr and Mg(OAr)2 (OAr=aryloxide) in polar media afforded several lithium aryloxomagnesiates. Factors influencing the structural chemistry of the compounds, such as the degree of ligand bulk, type of Lewis base donors, and crystallization solvent, are examined. Structural characterization reveals a discrete, solvent-separated species, [Li(thf)4][Mg(BHT)3].THF (1) (BHT=2,6-tBu2-4-MeC6H2O) and a family of molecular compounds with various Li/Mg stoichimetries, including a 1:1 Li/Mg ratio in [LiMg(Odpp)3(thf)2].0.5PhMe (2) (Odpp=2,6-Ph2C6H3O) and [Li(Et2O)Mg(Odpp)3].0.5PhMe (3), a 2:1 Li/Mg ratio as in [{Li(thf)2}2Mg(OMes)4].2THF (4) (OMes=2,4,6-Me3C6H2O) and [{Li(tmeda)}2Mg(m-Odtp)4].0.5Et2O (5) (m-Odtp=3,5-tBu2C6H3O), and a novel 2:3 Li/Mg ratio in [{Li(thf)2}2Mg3(m-Odtp)8(thf)2].3THF (6). Two new homometallic magnesium bis(aryloxides), Mg(Odpp)2(thf)2 (7) and Mg(Odpp)2(Et2O)2 (8), are also included for the sake of comparison. The solution behavior of the heterobimetallic compounds in arene and polar solvent is analyzed by 1H NMR spectroscopy.  相似文献   

2.
We systematically studied the excitation and the fluorescence steady-state spectroscopy of poly[2-methoxy-5-(2′-ethylhexoxy)-p-phenylene vinylene] (MEH-PPV) in two solvents and several concentrations. Fluorescence spectra were recorded for solutions in several concentrations (10−5 mg/ml to 10−3 mg/ml), showing that tetrahydrofuran (THF) and toluene solvate the polymer chain differently. Dilute solution (10−5 mg/ml) in THF exhibit broader fluorescence spectra due to greater conformation disorder. The degree of the aggregation depends on both the solvent and the polymer concentration. Aggregation is promoted in toluene solution and hindered in THF solvent.  相似文献   

3.
Abstract

A universal procedure of modeling chromatography separation, based on the plate model, has been developed. On each plate, the equilibrium between the analyte in the mobile and stationary phases is established. This equilibrium may be described by the concentration-dependent partition coefficient. The establishment of the equilibrium on each plate is followed by the displacement of the analyte in the mobile phase by one plate, establishment of new equilibrium, etc. The result is a series of elution curves with positions of maxima dependent on injected mass of the polymer. The procedure has been tested on modeling concentration effects on the basis of dependences of the partition coefficient on local concentrations on each plate. By comparison with the experiment, the slope of the concentration dependence of the partition coefficient of polystyrene in benzene was estimated. It is in qualitative agreement with the literature data obtained by a computer simulation of chromatography separation of polymers in good solvents.  相似文献   

4.
Gold nanoparticles stabilized by thiol-terminated poly(ethylene glycol) monomethyl ethers with molecular weights ranging from 350 to 2000 have been prepared at thiol-to-gold molar ratios ranging from 3:1 to 1:8. Particle size distributions have been constructed for these particles from transmission electron microscopy images of hundreds of particles for each variation in synthetic conditions. The mean diameters of these particles range from 1.5 to 3.2 nm, with a slight increase in particle size with decreasing thiol content; these particles are smaller than those prepared using alkanethiols at similar thiol-to-gold ratios. Particles prepared under thiol-poor conditions exhibit much greater polydispersity than those prepared under thiol-rich conditions and include numerically rare large-particle outliers that contain much of the gold in the sample. The mean diameters of the gold nanoparticles decrease slightly with increasing polymer weight, especially under thiol-rich conditions. A simple model is developed to predict the trends in nanoparticle diameter that would result were the polymer's steric bulk protecting the nanoparticles from additional growth the principal factor controlling nanoparticle size in this system. This model predicts a much stronger dependence on thiol concentration than has been experimentally observed and a dependence on polymer molecular weight opposite to that experimentally observed. This suggests that the polymers' steric bulk is not the principal reason that these polymers yield smaller nanoparticles than alkanethiols at similar thiol-to-gold ratios. It is instead proposed that polar polymers may yield small nanoparticles by accelerating particle nucleation via coordination between functional groups in the polymer and atomic gold.  相似文献   

5.
We report a spectroscopic and microscopic investigation of the synthesis of gold nanoparticles (AuNPs) with average sizes of less than 5 nm. The slow reduction and AuNP formation processes that occur by using 9-borabicyclo[3.3.1]nonane (9-BBN) as a reducing agent enabled a time-dependent investigation based on standard UV-vis spectroscopy and transmission electron microscopy (TEM) analyses. This is in contrast to other borohydride-based syntheses of thiolate monolayer protected AuNPs which form particles very rapidly. We investigated the formation of 1-octadecanethiol (ODT) protected AuNPs with average diameters of 1.5-4.3 nm. By studying the progression of nanoparticle formation over time, we find that the nucleation rate and the growth time, which are interlinked with the amount of ODT and the temperature, influence the size and the size dispersion of the AuNPs. High-resolution TEM (HRTEM) analyses also suggest that the nanoparticles are highly single crystalline throughout the synthesis and appear to be formed by a diffusion-controlled Ostwald-ripening growth mechanism.  相似文献   

6.
7.
Lipid vesicles displaying RGD peptide amphiphiles were fused with glass coverslips to control the ability of these surfaces to support cell adhesion and growth. Cell adhesion was prevented on phosphatidylcholine bilayers in the absence of RGD, whereas cells adhered and grew in the presence of accessible RGD amphiphiles. This specific interaction between cells and RGD peptides was further explored in a concentration-dependent fashion by creating surface composition arrays using microfluidics. For the range of concentrations studied adhesion and growth were favored by increased peptide concentration, but this concentration dependence was found to diminish in the higher concentration regions of the array. Developing peptide composition gradients in a membrane environment is demonstrated as an effective method to screen biological probes for cell adhesion and growth.  相似文献   

8.
We present a systematic investigation and analysis of the structure and stability of reverse micelle systems with the addition of NH(4)OH, ZrOCl(2), and Al(NO(3))(3) salts. We demonstrate that the reverse micelle size decreases with increasing salt additions until one reaches a critical concentration, which characterizes the onset of system destabilization. The concept of an electrical double layer, as it applies to reverse micelles, is considered for explaining features of destabilization, including the initial decrease in reverse micelle size, the destabilization concentration, and the effect of cation valence. We propose that the reduction in size prior to instability is caused by compression of the reverse micelle electrical double layers, as higher concentrations of salts are present. The reduced thickness of the electrical double layers allows the decaying potentials to move into closer proximity to each other before generating enough repulsion to balance the forces for reverse micelle formation and form a new equilibrium average reverse micelle size. The point of reverse micelle instability has been related to the formation of a two-phase system as a result of the inability to further compress the salt co-ions in the core of the reverse micelles, which would cause an excessive repulsive force between the overlapping potentials. We have extracted a critical potential of -89 nV between the two overlapping potentials for the AOT/water/isooctane (ω(0) = 10) systems studied. All these effects have important implications for the preparation of nanopowders by reverse micelle synthesis. If the reverse micelles are unstable before the precipitates are formed, then the advantage of reverse micelle synthesis is immediately lost.  相似文献   

9.
Dynamic states of cancer cells moving under shear flow in an antibody-functionalized microchannel are investigated experimentally and theoretically. The cell motion is analyzed with the aid of a simplified physical model featuring a receptor-coated rigid sphere moving above a solid surface with immobilized ligands. The motion of the sphere is described by the Langevin equation accounting for the hydrodynamic loadings, gravitational force, receptor-ligand bindings, and thermal fluctuations; the receptor-ligand bonds are modeled as linear springs. Depending on the applied shear flow rate, three dynamic states of cell motion have been identified: (i) free motion, (ii) rolling adhesion, and (iii) firm adhesion. Of particular interest is the fraction of captured circulating tumor cells, defined as the capture ratio, via specific receptor-ligand bonds. The cell capture ratio decreases with increasing shear flow rate with a characteristic rate. Based on both experimental and theoretical results, the characteristic flow rate increases monotonically with increasing either cell-receptor or surface-ligand density within certain ranges. Utilizing it as a scaling parameter, flow-rate dependent capture ratios for various cell-surface combinations collapse onto a single curve described by an exponential formula.  相似文献   

10.
A series of calcium complexes supported by chiral bisimidazoline ligands have been studied in the catalytic intramolecular hydroamination/cyclisation of amino-olefins. The complexes [Ca(R-BIM){N(SiMe(3))(2)}(THF)] (R = 4-C(6)H(4)Me, 5a, 4-C(6)H(4)F, 5b and (t)Bu, 5c) have given competitive enantioselectivities (up to 12%) when compared to current literature studies involving calcium. Bisimidazolines offer a significant advance over similar bisoxazoline ligands, by allowing a greater structural variance through a modular synthetic pathway.  相似文献   

11.
Iridium(III) complexes were designed and evaluated as efficient photoinitiators of polymerization reactions in combination with iodonium salts and silanes. Mechanistically, these reactions were shown to proceed through oxidative photoredox catalysis, generating aryl and silyl radicals under very soft irradiation conditions (blue LED, xenon lamp, and even sunlight). These radicals can initiate the free radical polymerization of acrylates or can be oxidized during the catalytic cycle to promote the ring-opening polymerization of epoxy monomers. Remarkably, both the (photo)chemical reactivity and the practical efficiency are dramatically affected by the ligands. In addition, the central role played by the oxidation ability of the excited state of the photocatalyst is discussed.  相似文献   

12.
Equilibrium constants and standard molar enthalpies of reaction were determined by titration calorimetry for the reaction of 1-butanol with 2-hydroxypropyl-b-cyclodextrin (HP-b-CD) in aqueous solution at different concentrations of NaCl (0-1.9 M). The standard molar free energy and entropy changes associated to the complexation were calculated from the corresponding equilibrium constants, K, and standard enthalpies determined experimentally. In NaCl solutions the inclusion complexes ButOH/HP-b-CD are more stable than in water and their stability increases at increasing NaCl concentration; otherwise, the standard molar enthalpy associated to the formation of the complexes does not change with the increasing of salt concentration. The dependence of K on NaCl concentration were used to evaluate the number of water molecules displaced from the hydration shells of HP-b-CD and ButOH in forming complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
14.
Robertis AD  Gianguzza A  Sammartano S 《Talanta》1995,42(11):1651-1662
Insoluble species were identified in the systems Ca(2+)-hemimellitate, Ca(2+)-1,2,3,4-butanetetracarboxylate and Ca(2+)-citrate, and their solubilities were determined in aqueous solution at T = 25 degrees C. Values of pK(s0) were obtained for the species CaLH (L = benzene-1,2,3-tricarboxylate or hemimellitate), Ca(2)L (L = 1,2,3,4-butanetetracarboxylate), CaLH and Ca(3)L(2) (L = citrate), together with their dependence on ionic strength. Solid compounds were also characterized by thermogravimetry. The complex formation in solution for the system Na(+) - and Ca(2+)-hemimellitate was studied too.  相似文献   

15.
Amorphous polymers were dissolved in chlorinated organic solvents and deposited on thin horizontal substrates. The solutions with various concentrations of polymers were deposited and evaporated under ambient conditions in a slow air current. Self-assembled oriented mesoscopically scaled patterns were observed. The patterns were studied with optical and atomic force microscopy. The concentration of the solution exerts a decisive influence on the mesoscopic cell characteristic dimension. Cell dimensions grow linearly with the polymer solution concentration for all kinds of tested polymers, chlorinated solvents and substrates. The dependence could be explained by a physical mechanism, based on the mass transport instability occurring under the intensive evaporation of the solvent. In situ FTIR study of the process was performed first. It was established with FTIR spectroscopy that film porosity is not due to water droplet condensation under evaporation.  相似文献   

16.
The influence of electronic and geometric factors is considered in the context of the manifestation of size effects in heterogeneous catalytic oxidation and hydrogenation reactions. Both of the factors are interdependent; however, the electronic factor predominates with regard to small metal and metal oxide particles (smaller than 10 nm), for which the energies of electron transitions in an activated complex are size-dependent. Only the geometry of active component nanoparticles exerts the main effect on the catalytic properties of coarser particles. In this case, the geometric factor depends on the accessibility of the active surface to reactants. The probability of the occurrence of complex active centers including several surface atoms increases as the active component particles of a catalyst become larger. The efficiency of the approach proposed to study the activating effect of nanophase catalysts is demonstrated using the oxidation and hydrogenation reactions of carbon oxides and the hydrogenation of acetonitrile and acetone as examples.  相似文献   

17.
An equation has been derived to describe the dependence of backscattered intensity on particle size in loose samples containing r-type of grains. The equation includes the density grain size effect and the grain size effect in compressed samples. The theoretical predictions are compared with experimental results.  相似文献   

18.
New equations have been derived to describe the dependence of X-ray transmitted intensity on particle size in heterogeneous specimens. The formulae include the effect of size distribution, a problem not covered in earlier theoretical work.  相似文献   

19.
Two-dimensional colloidal aggregation: concentration effects   总被引:1,自引:0,他引:1  
Extensive numerical simulations of diffusion-limited (DLCA) and reaction-limited (RLCA) colloidal aggregation in two dimensions were performed to elucidate the concentration dependence of the cluster fractal dimension and of the different average cluster sizes. Both on-lattice and off-lattice simulations were used to check the independence of our results on the simulational algorithms and on the space structure. The range in concentration studied spanned 2.5 orders of magnitude. In the DLCA case and in the flocculation regime, it was found that the fractal dimension shows a linear-type increase with the concentration phi, following the law: d(f)=d(fo)+aphi(c). For the on-lattice simulations the fractal dimension in the zero concentration limit, d(fo), was 1.451+/-0.002, while for the off-lattice simulations the same quantity took the value 1.445+/-0.003. The prefactor a and exponent c were for the on-lattice simulations equal to 0.633+/-0.021 and 1.046+/-0.032, while for the off-lattice simulations they were 1.005+/-0.059 and 0.999+/-0.045, respectively. For the exponents z and z', defining the increase of the weight-average (S(w)(t)) and number-average (S(n)(t)) cluster sizes as a function of time, we obtained in the DLCA case the laws: z=z(o)+bphi(d) and z'=z'(o)+b'phi(d'). For the on-lattice simulations, z(o), b, and d were equal to 0.593+/-0.008, 0.696+/-0.068, and 0.485+/-0.048, respectively, while for the off-lattice simulations they were 0.595+/-0.005, 0.807+/-0.093, and 0.599+/-0.051. In the case of the exponent z', the quantities z'(o), b', and d' were, for the on-lattice simulations, equal to 0.615+/-0.004, 0.814+/-0.081, and 0.620+/-0.043, respectively, while for the off-lattice algorithm they took the values 0.598+/-0.002, 0.855+/-0.035, and 0.610+/-0.018. In RLCA we have found again that the fractal dimension, in the flocculation regime, shows a similar linear-type increase with the concentration d(f)=d(fo)+aphi(c), with d(fo)=1.560+/-0.004, a=0.342+/-0.039, and c=1.000+/-0.112. In this RLCA case it was not possible to find a straight line in the log-log plots of S(w)(t) and S(n)(t) in the aggregation regime considered, and no exponents z and z' were defined. We argue however that for sufficiently long periods of time the cluster averages should tend to those for DLCA and, therefore, their exponents should coincide with z and z' of the DLCA case. Finally, we present the bell-shaped master curves for the scaling of the cluster size distribution function and their evolution when the concentration increases, for both the DLCA and RLCA cases.  相似文献   

20.
The geometric and energy characteristics of endohedrals X@C n (X = He, Ne, Ar; n = 20, 24, 30, 32, 40, 50, 60) were calculated by the density functional theory. The insertion of the helium atom leads to only a slight change in the geometry of the fullerene cage of the endohedrals. As the size of the trapped atom increases, the average C—C bond length increases in proportion to the radii of these atoms (by 0.05 for Ne@C20 and 0.12 for Ar@C20). The inclusion energies of endofullerenes and the pressure of the cage exerted on the endo atom were calculated for all the above-mentioned endohedrals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号