首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Using an asymptotic small-perturbation method, the flow around a strongly heated sphere at small Reynolds numbers Re ≪ 1 is considered with account for thermal stresses in the gas in the higher-order approximations, beyond the Stokes one. It is assumed that the value of the Prandtl number Pr is arbitrary and the temperature dependence of the viscosity is described by a power law with an arbitrary exponent. In the O(Re2) and O(Re3 ln(Re)) approximations, the drag force of a heated sphere is found over a wide range of the ratios of sphere’s temperature to the gas free-stream temperature T W /T . The limits of applicability of the first (in Re) approximation are investigated, including the negative-drag effect, attributable to the action of the thermal stresses. The results are compared with numerical calculations of the flow around a hot sphere. The limits of applicability of the approximations found are examined. Similar results are obtained for the standard Navier-Stokes equations in which the thermal stresses are neglected.  相似文献   

3.
The axi-symmetrical steady viscous flow past a sphere in a uniform flow in a cylinder of finite length is calculated with the finite element method and a penalty function approach. Our numerical results for the drag coefficient, the standing eddy length and the angle of flow separation as a function of Reynolds number agree well with literature. The velocity profiles in the vicinity of the sphere show that for distances larger than 3 × radius of the sphere and angles much larger than the angle of flow separation the influence of the sphere is less than 5%. The velocity at the position of our micro-anemometer is equal to the velocity generated by the calibration unit within 5%. From the numerical calculations the conclusion can be drawn that spherical micro-anemometers with diameters up to 20% of the diameter of the calibration unit can be calibrated.  相似文献   

4.
When particles are submerged in a shear flow, there are lateral (lift) forces on the particles, and these lateral forces affect the dispersion of the particles very much. Recent literature survey indicates that there are large discrepancies among the results from the previous numerical investigations on this subject. A small computational domain ranging between 20–30 sphere radii was used in all the previous numerical investigations. However, the result from the present study reveals that the value of lift coefficient strongly depends on the size of computational domain. To provide correct numerical data and physical interpretation for the forces on a spherical particle in linear shear flow, accurate numerical computations were performed for 5≤Re≤200 using a computational domain of 101 sphere radii.  相似文献   

5.
We have measured by means of four ultrasonic transducers the fall velocity of a sphere at high Reynolds number range in dilute polyacrylamide solutions which have viscoelastic effects. The polymer solutions were 5, 20 and 50ppm in the concentration. Basset-Bousinessq-Oseen equation for the falling sphere was analyzed numerically on Newtonian fluids in order to compare with the fall velocity of a sphere in the polymer solutions, and the experimental data of the fall velocity in tap water is in agreement with the range of no effect of the test tank wall. In polymer solutions, it was shown that the fall velocity is larger than that in Newtonian fluids within the critical Reynolds number range such that the drag reduction occurs and is smaller than that of Newtonian fluids over the range. The experimental data for the drag reduction ratio of polymer solutions is arranged by Weissenberg number calculating the experimental data of the first normal stress differences. It was shown that the maximum drag reduction ratio in the polymer solutions lies in the range of We=3∼10. Received: 15 October 1997 Accepted: 12 May 1998  相似文献   

6.
 This paper describes the three-dimensional flow structure in grooved channels with different cavity lengths at intermediate Reynolds numbers. For steady flow, the three-dimensional effects are dominant near the side walls of the channel. However, after the onset of self-sustained oscillatory flow due to Tollmien–Schlichting waves as the primary instability, a secondary instability produces a three-dimensional flow with Taylor–Geortler-like vortical structure, at the bottom of the groove. This trend becomes more significant as the cavity length increases. Furthermore, the reason for three-dimensional flow is discussed using additional numerical analysis, and it is confirmed that the source of three-dimensional instability is the groove vortices due to the presence of side walls, rather than the channel traveling wave. Received: 7 September 1999/Accepted: 11 November 2000  相似文献   

7.
A flow past a heterogeneous porous sphere is investigated by using the perturbation theory. The flow through the sphere is divided into two zones, which are fully saturated with the viscous fluid, and the flow in these zones is governed by the Brinkman equation. The space outside the sphere, where a clear fluid flows, is also divided into two zones: the Navier–Stokes zone and the Oseen flow zone. The solutions on the interface inside the sphere are matched with the condition proposed by Merrikh and Mohammad. The stream function in the Navier–Stokes zone is matched with that on the sphere surface by the condition proposed by Ochoa-Tapia and Whitaker. It is found that the drag on the spherical shell decreases as the permeability toward the sphere boundary increases.  相似文献   

8.
The flow over a smooth sphere is examined in the Reynolds number range of 5.0 × 104 < Re < 5.0 × 105 via measurements of the fluctuating forces and particle image velocimetry measurements in a planar cut of the velocity field. Comprehensive studies of the statistics and spectra of the forces are presented for a range of subcritical and supercritical Reynolds numbers. While the subcritical lateral force spectra are dominated by activity corresponding to the large-scale vortex shedding frequency at a Strouhal number of approximately 0.18, there is no such peak apparent in the supercritical spectra, although resolution effects may become important in this region. Nor does the large-scale vortex shedding appear to have a significant effect on the drag force fluctuations at either sub- or super-critical Reynolds numbers. A simple double spring model is shown to capture the main features of the lateral force spectra. The low-frequency force fluctuations observed in earlier computational studies are shown to have important implications for statistical convergence, and in particular, the apparent mean side force observed in earlier studies. At least one thousand dimensionless time units are required for reasonable estimates of the second and higher moments below the critical Reynolds number and even more for supercritical flow, stringent conditions for computational studies. Lastly, investigation of the relationship between the motion of the instantaneous wake shape, defined via the local position where the streamwise velocity is equal to half the freestream value, and the in-plane lateral force for subcritical flow reveals a significant negative correlation throughout the near wake, which is shown to be related to a structure inferred to arise from the large-scale vortex shedding convecting downstream at 61% of the freestream velocity. In addition to its utility in understanding basic sphere flow, the apparatus is also a testbed that will be used in future studies, examining the effect of both static and dynamic changes to the surface morphology.  相似文献   

9.
The lift force on an isolated rotating sphere in a uniform flow was investigated by means of a three-dimensional numerical simulation for low Reynolds numbers (based on the sphere diameter) (Re&lt;68.4) and high dimensionless rotational speeds (Г5). The Navier-Stokes equations in Cartesian coordinate system were solved using a finite volume formulation based on SIMPLE procedure. The accuracy of the numerical simulation was tested through a comparison with available theoretical, numerical and experimental results at low Reynolds numbers, and it was found that they were in close agreement under the above mentioned ranges of the Reynolds number and rotational speed. From a detailed computation of the flow field around a rotational sphere in extended ranges of the Reynolds number and rotational speed, the results show that, with increasing the rotational speed or decreasing the Reynolds number, the lift coefficient increases. An empirical equation more accurate than those obtained by previous studies was obtained to describe both effects of the rotational speed and Reynolds number on the lift force on a sphere. It was found in calcttlations that the drag coefficient is not significantly affected by the rotation of the sphere. The ratio of the lift force to the drag force, both of which act on a sphere in a uniform flow at the same time, was investigated. For a small spherical particle such as one of about 100μm in diameter, even if the rotational speed reaches about 10^6 revolutions per minute, the lift force can be neglected as compared with the drag force.  相似文献   

10.
The problem of flow of a viscous fluid around a spherical drop has been examined for the limiting case of small and large Reynolds numbers in several investigations (see [1–3], for instance; there is a detailed review of various approximate solutions in [4]). For the intermediate range of Reynolds numbers (approximately 1Re100), where numerical integration of the complete Navier-Stokes equations is necessary, there are solutions of special cases of the problem —flow of air around a solid sphere [5–7], a gas bubble [8, 9], and water drops [10]. The present paper deals with flow around a spherical drop at intermediate Reynolds numbers up to Re=200 for arbitrary values of the ratio of dynamic viscosities =1/2 inside and outside the drop. It is shown that a return flow can arise behind the drop in flow without separation. In such conditions the circulatory flow inside the drop breaks up. An approximate formula for the drag coefficient of the drop is given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 8–15, January–February, 1976.We thank L. A. Galin, G. I. Petrov, L. A. Chudov, and participants in the seminars led by them for useful discussions.  相似文献   

11.
The interaction between a laminar boundary layer and an open cavity is investigated experimentally for medium range Reynolds numbers. Flow visualizations are carried out for three different observation directions in order to understand the spatial development of dynamical structures. In particular, synchronized visualizations in two parallel planes picture the transverse development of the flow. The study is conducted by changing the cavity aspect ratio, the Reynolds number and therefore the flow patterns inside the cavity. The issue is to emphasize the 3-D development of the flow. In particular, we show that the dynamical structures are not due to secondary shear layer instabilities.  相似文献   

12.
Exact expressions are found for the drag (modified Stokes force) and the lift (modified Magnus force) on a porous sphere spinning slowly in a viscous fluid flowing slowly and uniformly past it.  相似文献   

13.
Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 40–44, July–August, 1991.  相似文献   

14.
A three-dimensional rarefied-gas flow past a spinning sphere in the transitional and near-continuum flow regimes is studied numerically. The rarefaction and compressibility effects on the lateral (Magnus) force and the aerodynamic torque exerted on the sphere are investigated for the first time. The coefficients of the drag force, the Magnus force, and the aerodynamic torque are found for Mach numbers ranging from 0.1 to 2 and Knudsen numbers ranging from 0.05 to 20. In the transitional regime, at a certain Knudsen number depending on the Mach number the Magnus force direction changes. This change is attributable to the increase in the role of normal stresses and the decrease in the contribution of the shear stresses to the Magnus force with decrease in the Knudsen number. A semi-empirical formula for the calculation of the Magnus force coefficient in the transitional flow regime is proposed.  相似文献   

15.
Arational asymptotic theory is proposed,which describes the turbulent dynamic and thermal boundary layer on a flat plate under zero pressure gradient. The fact that the flow depends on a finite number of governing parameters makes it possible to formulate algebraic closure conditions relating the turbulent shear stress and heat flux with the gradients of the averaged velocity and temperature. As a result of constructing an exact asymptotic solution of the boundary layer equations, the known laws of the wall for velocity and temperature, the velocity and temperature defect laws, and the expressions for the skin friction coefficient, Stanton number, and Reynolds analogy factor are obtained. The latter makes it possible to give two new formulations of the temperature defect law, one of which is identical to the velocity defect law and contains neither the Stanton number nor the turbulent Prandtl number, and the second formulation does not contain the skin friction coefficient. The heat transfer law is first obtained in the form of a universal functional relationship between three parameters: the Stanton number, the Reynolds number, and the molecular Prandtl number. The conclusions of the theory agree well with the known experimental data.  相似文献   

16.
The flow past a spherical bubble undergoing a rectilinear motion in the unsteady flow of an unbounded liquid medium is investigated. The liquid velocity field at infinity is assumed to be uniform and the Reynolds number to be large. The Strouhal number is taken to be of order unity. The velocity distribution is sought by superposition of a perturbation field on the potential flow past the bubble so that the flow field is divided into four regions, i.e. the external flow field where the potential flow holds, the boundary layer, the rear stagnation point region and the wake. The flow in the rear stagnation point region and the wake is assumed to be essentially inertial. The unsteady drag experienced by the bubble is calculated from the mechanical energy balance of the liquid.  相似文献   

17.
The problem of the axisymmetric motion of a fluid between infinite disks is solved by the method of matched asymptotic expansions without introducing model assumptions. For the strongly nonlinear stage of spin-down solutions are found that correspond to initial states different from rigid-body rotation, when the boundary layer is not a Kármán layer. The experimental results obtained are in qualitative and quantitative agreement with the theory.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 39–46, May–June, 1986.The authors wish to thank A. M. Obukhov and F. V. Dolzhanskii for formulating the problem and for constructive discussion.  相似文献   

18.
The vortical structure of near-wake behind a sphere is investigated using a PIV technique in a circulating water channel at Re = 11,000. The measured velocity fields show a detailed vortical structure in the recirculation region such as recirculation vortices, reversed velocity zone, and out-of-plane vorticity distribution. The vorticity distribution of the sphere wake shows waviness in cross-sectional planes. The time-averaged turbulent structures are consistent with the visualized flow showing the onset of shear layer instability. The spatial distributions of turbulent intensities provide turbulent statistics for validating numerical predictions.  相似文献   

19.
Measurements of turbulent flow in a channel at low Reynolds numbers   总被引:1,自引:0,他引:1  
Normal and streamwise components of the velocity fields of turbulent flow in a channel at low Reynolds numbers have been measured with laser-Doppler techniques. The experiments duplicate the conditions used in current direct numerical simulations of channel flow, and good, but not exact, agreement is found for single-point moments through fourth order. In order to eliminate LDV velocity bias and to measure velocity spectra, the mean time interval between LDV signals was adjusted to be much smaller than the smallest turbulence time scale. Spectra of the streamwise and normal components of velocity at locations spanning the channel are presented.  相似文献   

20.
Results are presented for the flow past a stationary square cylinder at zero incidence for Reynolds number, Re ? 150. A stabilized finite‐element formulation is employed to discretize the equations of incompressible fluid flow in two‐dimensions. For the first time, values of the laminar separation Reynolds number, Res, and separation angle, θs, at Res are predicted. Also, the variation of θs with Re is presented. It is found that the steady separation initiates at Re = 1.15. Contrary to the popular belief that separation originates at the rear sharp corners, it is found to originate from the base point, i.e. θs=180° at Re = Res. For Re > 5, θs approaches the limit of 135 °. The length of the separation bubble increases approximately linearly with increasing Re. The drag coefficient varies as Re?0.66. Flow characteristics at Re ? 40 are also presented for elliptical cylinders of aspect ratios 0.2, 0.5, 0.8 and 1 (circle) having the same characteristic dimension as the square and major axis oriented normal to the free‐stream. Compared with a circular cylinder, the flow separates at a much lower Re from a square cylinder leading to the formation of a bigger wake (larger bubble length and width). Consequently, at a given Re, the drag on a square cylinder is more than the drag of a circular cylinder. This suggests that a cylinder with square section is more bluff than the one with circular section. Among all the cylinder shapes studied, the square cylinder with sharp corners generates the largest amount of drag. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号