首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UV- active cellulose fibers were obtained by dry-wet method spinning an 8?% by weight α-cellulose solution in N-methylomorpholine-N-oxide (NMMO) modified by europium-doped gadolinium oxyfluoride Gd4O3F6:Eu3+ containing 5?mol (%) of the dopant. Photoluminescent nanoparticles were introduced in the in powder form into a polymer matrix during the process of cellulose dissolution in NMMO. The dependencies of emission intensity on excitation energy and the concentration of Gd4O3F6:Eu3+ nanoparticles in the final cellulosic products were examined by photoluminescence spectroscopy (excitation and emission). The fiber structure was studied by X-ray powder diffraction analysis. The size and dispersity of the nanoparticles in the polymer matrix were evaluated using scanning electron microscopy and X-ray microanalysis. The influence of different concentration particles (in the range from 0.5 to 5?% by weight) on the mechanical properties of the fibers, such as tenacity and elongation at break, were determined.  相似文献   

2.
Nitrogen adsorption was used to characterize mesoporous structures in never-dried softwood cellulose fibers. Distinct inflections in desorption isotherms were observed over the relative vapor pressure (P/P0) range of 0.5–0.42 for never-dried cellulose fibers and partially delignified softwood powders. The reduction in N2 adsorption volume was attributed to cavitation of condensed N2 present in mesopores formed via lignin removal from wood cell walls during delignification. The specific surface areas of significantly delignified softwood powders were ~150 m2 g?1, indicating that in wood cell walls 16 individual cellulose microfibrils, each 3–4 nm in width, form one cellulose fibril bundle surrounded with a thin layer of lignin and hemicelluloses. Analysis of N2 adsorption isotherms indicates that mesopores in the softwood cellulose fibers and partially delignified softwood powders had peaks ranging from 4 to 20 nm in diameter.  相似文献   

3.
Cellulose multi-filament fibers have been spun successfully on a pilot plant scale, from a cellulose dope in 7 wt% NaOH/12 wt% urea aqueous solution pre-cooled to −12 °C. Coagulation was accomplished in a bath with 10 wt% H2SO4/12 wt% Na2SO4 and then 5 wt% H2SO4 aqueous solution. By using different finishing oil, including H2O, 4% glycerol aqueous solution, 2% polyvinyl alcohol (PVA) aqueous solution, 2% polyethylene glycol octyl phenylether (OP) aqueous solution, mobol and 2%glycerol/1%PVA/1%OP aqueous solution (PGO), we prepared six kinds of the cellulose multi-filaments, with tensile strength of 1.7–2.1 cN/dtex. Their structure and properties were investigated with scanning electron microscope (SEM), 13C NMR solid state, wide-angle X-ray diffraction (WAXD) and tensile testing. The cellulose fibers treated with PGO possessed higher mechanical properties and better surface structure than others. Interestingly, although the orientation of the cellulose multi-filaments is relatively low, the tensile strength of the single-fiber was similar to that of Lyocell. It was worth noting that the dyeability of the multi-filament fibers was superior to viscose rayon.  相似文献   

4.
N 1,N 1,N 2,N 2-tetramethylethane-1,2-diamine-based ionic salts (TMEDA), N 1,N 1,N 1,N 2,N 2,N 2-hexamethylethane-1,2-diaminium dicyanamide (HMEDA-(DCA)2) were prepared following the quaternization and subsequent ion exchange. The chemical structure of the HMEDA-(DCA)2 was confirmed using 13C NMR spectrum and elemental analysis. The corresponding viscosity of its 60 wt% solution was found to be lower than 5 cP at room temperature, which was critical for propellant application. The ignition delay of 40 wt% HMEDA-(DCA)2 solution was decreased to 20–30 ms dramatically using alkali metal salts, Li(CH3COO), Mg(CH3COO)2, and Ca(CH3COO)2 as a co-catalyst when white fume nitric acid was utilized as an oxidizer.  相似文献   

5.
The blend membranes were prepared from cellulose/konjac glucomannan (KGM) cuprammonium solution by coagulating with aqueous 10 wt% NaOH solution, 20°C and 40°C water, respectively. Miscibility, pore morphology, structure, water permeability and mechanical properties of the blend membranes were investigated. The complex forms of cellulose/KGM in the mixed solutions, the effect of various coagulants and the percent content of KGM (wKGM) on the structure and properties of the blend membrane are discussed. SEM and mechanical relaxation analysis indicate that the blend membranes are miscible in the range of 0–30 wt% of wKGM. When wKGM was smaller than 20 wt%, the tensil strength of the blend membrane coagulated by alkali aqueous solution was enhanced, corresponding to homogeneous structure and small pore size. However, blend membranes having a larger pore size (366 nm by SEM) and water permeability (560 ml/m2 h mmHg) were obtained by coagulating the cellulose/KGM (70:30) cuprammonium solution with 40°C water, where ca. 20% of KGM as pore former were removed from the membrane.  相似文献   

6.
The present study focuses on the proton-conducting polymer electrolytes; poly (N-vinyl pyrrolidone)–ammonium thiocyanate and poly (N-vinyl pyrrolidone)–ammonium acetate prepared by solution casting technique. The XRD analysis indicates the amorphous nature of the polymer electrolytes. The Raman spectra of the C=O vibration of pure polymer PVP at 1,663 cm?1 has been appeared as doublet in the polymer electrolytes. The introduction of this new peak in the salt-doped polymer electrolytes may be due to interaction of the cation with the polymer. The room temperature ionic conductivity σ 303κ has been found to be high, 1.7?×?10?4 S cm?1 for 80 mol% PVP–20 mol% NH4SCN and 1.5?×?10?6 S cm?1 for 75 mol% PVP–25 mol% CH3COONH4. The polymer electrolytes have been tested for their application in Zn–air battery.  相似文献   

7.
The kinetics of oxidation of N,N-bis(salicylaldehyde-1,2-diaminoethane) cobalt(II) complex by N-bromosuccinimide (NBS) in aqueous acid and H2O–MeOH solvent mixtures were studied spectrophotometrically over the 20–40 °C range, 0.1–0.5 mol dm?3 ionic strength, 2.2–2.8 pH range and 0–40 wt% MeOH–H2O solvent mixtures for a range of NBS and complex concentrations. The rate shows first-order dependence on both [NBS] and [complex] and decreases with pH over the range studied. The protonated form of N-bromosuccinimide was identified as the main reactive species. An inner-sphere mechanism involving free radicals is proposed.  相似文献   

8.
The kinetics of vapor nitration of cellulose with nitric anhydride at various pressures was studied under conditions of natural convection in the absence of air, using the nonisothermal kinetic method. The process rate was found to be proportional to the N2O5 pressure. The nitration is described by a law of the dη/dt =k 1/(1+βν) type, wherek 1 = 103.82±0.5 exp[-(36000±(RT)]p N 2O5 s?1. β = 10?7.33±1.4exp[(41300±8000)/(RT)] s?1, s?1, within the extents of conversion from 0.04 to 0.4. At high levels of conversion, the nitration occurs with autoacceleration caused by the accumulation of the HNO3 formed. The diffusion mechanism of vapor nitration of cellulose was suggested and discussed. The values of the effective diffusion constant for N2O5 in cellulose and the corresponding activation energy (38.4±2.8 kJ mol?1) have been estimated.  相似文献   

9.
In this paper, a novel luminescent hydrogel was successfully prepared by incorporating Tb-HSA (HSA = Human Serum Albumin) complex into cellulose host. The green luminescence intensities of Tb(III) exhibited onoff changes in terms of pH variation. At the same time, europium activated phosphor (GdVO4:Eu3+) was immobilized into the cellulose hydrogels through two approaches. The photophysical properties of luminescent gels with the temperature variation were investigated by fluorescence. The new group of soft materials will display task-specific usages in sensing fields.  相似文献   

10.
The synthesis, characterization, and degradability of the novel aliphatic polyester bearing pendant N-isopropylamide functional group are reported for the first time. 2-(N-Isopropyl-2-carbamoylethyl)cyclohexanone (CCH) was first synthesized by the Michael reaction of N-isopropylacrylamide with cyclohexanone and was subsequently converted into 6-(N-isopropyl-2-carbamoylethyl)-?-caprolactone (CCL) by the Baeyer-Villiger oxidation reaction using 3-chloroperoxybenzoic acid (mCPBA) as the oxidant. Finally, the novel functionalized poly(?-caprolactone) bearing the pendant N-isopropylamide functional groups, poly(6-(N-isopropyl-2-carbamoylethyl)-?-caprolactone-co-?-caprolactone)s (poly(CCL-co-CL)), were carried out successfully by bulk ring-opening polymerization of CCL and ?-CL initiated by Sn(Oct)2. Poly(CCL-co-CL) were characterized by 1H NMR, 13C NMR, SEC and DSC. The copolymer containing 9.1 mol% CCL formed flexible films and was used to study its degradability. A phosphate buffer (pH = 7.4) with temperature 37 °C was adopted to proceed the degrading study all through. Compared with poly(?-caprolactone), the hydrolytic degradation of poly(CCL-co-CL) was much faster, which is confirmed by the weight loss and change of intrinsic viscosity.  相似文献   

11.
Novel luminescent bio-based hydrogels comprising cellulose and Y4Si2O7N2:Ce4+ (YC) were prepared in an alkali/urea aqueous system using epichlorohydrin as a cross-linker. The structure, characteristics and properties of the hydrogels were investigated by various techniques, including FTIR spectroscopy, wideangle X-ray diffraction, scanning electron microscopy, etc. The results showed that when the content of YC was less than 0.05 g, the YC particles were tightly embedded in the macro porous of cellulose matrix, which not only supplied cavities for YC immobilization, but also supplied the pore wall to protect the structure and character of YC. Hence, the cellulose–YC hybrid hydrogels exhibited strong cyan fluorescence under a UV lamp. However, excess of YC particles were enshrouded in the cellulose matrix resulted in smaller pores, weaker fluorescence intensity, lower swelling ratio and higher mechanical properties.  相似文献   

12.
Development of advanced functional materials from naturally abundant polymers such as cellulose are of significant importance. Of particular interest is embedding antibacterial functionality to cellulose materials to make permanent antibacterial materials and devices. In the present research, a “clickable” quaternary ammonium compound, N-(2-ethoxy-2-oxoethyl)-N,N-dimethylprop-2yn-1-aminium bromide (EdMPABr) was synthesized via a simple reaction with nearly stoichiometric yield and well characterized with 1D (1H, 13C) and 2D (COSY, HSQC) NMR and ATR-FTIR. EdMPABr can be covalently bonded to many molecules containing an azido group to form non-leaching antibacterial materials via the simple Cu(I)-catalyzed alkyne-azide [2 + 3] cycloaddition reaction. As an example, EdMPABr was attached to our previously reported 3-O-azidopropoxypoly(ethylene glycol)-2,6-di-O-thexyldimethylsilyl cellulose (3-N3PEG-2,6-TDMS cellulose, DS = 0.54 at C3 determined by 1H NMR). Significant antibacterial activity of the synthesized 3-O-quaternary ammonium-2,6-di-O-thexyldimethylsilyl cellulose (3-QA-2,6-TDMS cellulose, DS = 0.30 at C3 determined by using N content from elemental analysis) was confirmed by testing against the representative bacteria Escherichia coli. By linking the EdMPABr to the honeycomb film of 3-N3PEG-2,6-TDMS cellulose, the formed honeycomb film exhibited both antibacterial and antifouling properties. This research provides a simple and robust route towards the development of permanent antibacterial materials and biomedical devices.  相似文献   

13.
Strontium additions in (La1?x Sr x )1?y Mn0.5Ti0.5O3?δ (x?=?0.15–0.75, y?=?0–0.05) having a rhombohedrally distorted perovskite structure under oxidizing conditions lead to the unit cell volume contraction, whilst the total conductivity, thermal and chemical expansion, and steady-state oxygen permeation limited by surface exchange increase with increasing x. The oxygen partial pressure dependencies of the conductivity and Seebeck coefficient studied at 973–1223?K in the p(O2) range from 10?19 to 0.5?atm suggest a dominant role of electron hole hopping and relatively stable Mn3+ and Ti4+ states. Due to low oxygen nonstoichiometry essentially constant in oxidizing and moderately reducing environments and to strong coulombic interaction between Ti4+ cations and oxygen anions, the tracer diffusion coefficients measured by the 18O/16O isotopic exchange depth profile method with time-of-flight secondary-ion mass spectrometric analysis are lower compared to lanthanum–strontium manganites. The average thermal expansion coefficients determined by controlled-atmosphere dilatometry vary in the range 9.8–15.0?×?10?6?K?1 at 300–1370?K and oxygen pressures from 10?21 to 0.21?atm. The anodic overpotentials of porous La0.5Sr0.5Mn0.5Ti0.5O3?δ electrodes with Ce0.8Gd0.2O2-δ interlayers, applied onto LaGaO3-based solid electrolyte, are lower compared to (La0.75Sr0.25)0.95Cr0.5Mn0.5O3?δ when no metallic current-collecting layers are introduced. However, the polarization resistance is still high, ~2 Ω?×?cm2 in humidified 10?% H2–90?% N2 atmosphere at 1073?K, in correlation with relatively low electronic conduction and isotopic exchange rates. The presence of H2S traces in H2-containing gas mixtures did not result in detectable decomposition of the perovskite phases.  相似文献   

14.
Alkali cellulose is an important intermediate in the production of cellulose derivatives. N-methylmorpholine-N-oxide (NMMO)/H2O was used as a homogeneous reaction medium for the cellulose alkalization process to intensify the alkalization degree and improve the substitution uniformity. The morphology, specific surface area and crystalline structure of pristine cellulose, the as-synthesized alkali cellulose and dissolved-regenerated cellulose were characterized by SEM, BET, XRD and FT-IR, respectively. The results showed that the homogeneous reaction medium not only offered a low mass transfer resistance, but also facilitated a disruption of the hydrogen bond in cellulose, thus resulting in the transformation of the cellulose structure from complicated stacking chains to simple glucose chains. The interior hydroxyl groups in the cellulose became accessible to the alkaline reagent NaOH to enhance the alkalization process for the increase in bonding alkali content and the improvement in substitution uniformity. The bonding alkali content was calculated by the difference between total added alkali and free alkali and was achieved as 0.61 g/g cellulose at the optimized operation conditions: reaction temperature of 95 °C, reaction time of 90 min, NMMO dosage of 90.00 g, cellulose 1.0 g and NaOH concentration of 1.40 wt%. Meanwhile, in the conventional alkalization process, the bonding alkali content was just 0.41 g/g cellulose. The alkali cellulose prepared in NMMO/H2O medium has a large specific surface area of 125 m2 g?1 and an extremely low crystallinity degree. The NMMO/H2O system represents a potential homogeneous solvent for the cellulose alkalization process.  相似文献   

15.
N-methylmorpholine N-oxide (NMMO) is a known cellulose solvent used in industrial scale (LyoCel process). We have studied interactions between pretreated softwood pulp fibers and aqueous NMMO using nuclear magnetic resonance (NMR) spectroscopic methods, including solid state cross polarisation magic angle spinning (CP-MAS) 13C and 15N spectroscopies, and 1H high resolution MAS NMR spectroscopy. Changes in both cellulose morphology and in accessibility of solvents were observed after the pulp samples that were exposed to solvent species were treated at elevated temperature. Evidence about interactions between cellulose and solvent components was observed already after a heat treatment of 15 min. The crystalline structure of cellulose was seen to remain intact for the first 30 min of heat treatment, at the same time there was a re-distribution of solvent species taking place. After a 90 min heat treatment the crystalline structure of cellulose had experienced major changes, and potential signs of regeneration into cellulose II were observed.  相似文献   

16.
Sb2S3 crystal growth kinetics in (GeS2) x (Sb2S3)1?Cx thin films (x?=?0.4 and 0.5) have been investigated through this study by optical microscopy in the temperature range of 575?C623?K. Relative complex crystalline structures composed of submicrometer-thin Sb2S3 crystal fibers develop linearly with time. The data on temperature dependence of crystal growth rate exhibit an exponential behavior. Corresponding activation energies were found to be E G?=?279?±?7?kJ?mol?1 for x?=?0.4 and E G?=?255?±?5?kJ?mol?1 for x?=?0.5. These values are similar to activation energies of crystal growth in bulk glasses of the same compositions. The crystal growth is controlled by liquid?Ccrystal interface kinetics. It seems that the 2D surface-nucleated growth is operative in this particular case. The calculated crystal growth rate for this model is in good agreement with experimental data. The crystal growth kinetic characteristic is similar for both the bulk glass and thin film for x?=?0.4 composition. However, it differs considerably for x?=?0.5 composition. Thermodynamic and kinetic aspects of crystal growth are discussed in terms of Jackson??s theory of liquid?Ccrystal interface.  相似文献   

17.
Novel mesoporous SBA-16 type of hybrids TTA-S16 and DBM-S16 were synthesized by co-condensation of modified β-diketone (TTA-Si and DBM-Si, DBM=1,3-diphenyl-1,3- propanepione, TTA=2-thenoyltrifluoroacetone) and tetraethoxysilane (TEOS) in the presence of Pluronic F127 as template, which were confirmed by FTIR, XRD, 29Si CP-MAS NMR, and N2 adsorption measurements. Novel organic-inorganic mesoporous luminescent hybrid containing RE3+ (Eu3+, Tb3+) complexes covalently attached to the functionalized ordered mesoporous SBA-16 (TTA-S16 and DBM-S16), which were designated as bpy-RE-TTA-S16 and bpy-RE-DBM-S16, were obtained by sol-gel process. The luminescence properties of these resulting materials were characterized in detail, and the results reveal that mesoporous hybrid material bpy-Eu-TTA-S16 present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the corresponding DBM-containing materials bpy-Eu-DBM-S16, while bpy-Tb-DBM-S16 exhibit the stronger characteristic emission of Tb3+ and longer lifetime than the corresponding TTA-containing materials bpy-Tb-TTA-S16.  相似文献   

18.
Combining X-ray powder diffraction with fluorescence measurements is an efficient way to determine the optimum activator concentration of inorganic phosphors. La1?xEuxAlO3 samples (perowskite structure), prepared by solid state reactions with 0.5<x<5.0 at 1480 K, were investigated by both analytical methods. The luminescence emission spectra show strong 5D0-7F1 and 5D0-7D2 transitions and fluorescence intensity reaches a maximum at 1 mol% Eu3+. X-ray diffraction shows the formation of an EuAlO3 phase at Eu3+ concentration above 1 mol%. Below 1 mol%, Eu3+ substitutes for La3+, as can be seen from the change in the lattice constant c.  相似文献   

19.
Multistep synthesis with X-ray diffraction monitoring of the phase composition has been carried out, optimal synthesis parameters have been determined, and the magnetic properties of solid solutions between thiospinels with ordered tetrahedral A lattices (ferrimagnet Cu0.5Fe0.5Cr2S4 (T C = 347 K) and anti-ferromagnet Cu0.5In0.5Cr2S4 (T N = 35 K) have been studied. Both compounds crystallize in F $\bar 4$ 3m (T d 2 ) structure. Measurements over wide ranges of fields (0.05?C40 kOe) and temperatures (5?C300 K) highlighted the nature of magnetism in the samples; new magnetic species have been discovered.  相似文献   

20.
Scandium sesquioxide-based solid solutions of composition Sc2 ? 2x Eu2x O3 (0.005 ?? x ?? 0.05) were prepared by thermolysis of Sc1 ? x Eu x (CH3COO)3 and by reacting mixtures of scandium and europium nitrates with ethylene glycol. Thermal decomposition of Sc1 ? x Eu x (CH3COO)3 was found to yield Sc2 ? 2x Eu2x O3 with the shapes of aggregates atypical of the cubic structure of this oxide, and the reaction products of scandium and europium nitrates were found to have a loose spongelike structure. A spectroscopic study showed that Sc2 ? 2x Eu2x O3 and Sc1 ? x Eu x (CH3COO)3 are potential luminescent materials active in the visible spectral region. The tervalent europium in the Sc2 ? 2x Eu2x O3 structure is the source of strong red emission (5 D 0 ?? 7 F 2) and can be used in fluorescent lamps, colored lightning, and optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号