首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Ag nanoparticle (NP)‐decorated MIL‐125(Ti) microspheres (Ag@MIL‐125(Ti)) were firstly fabricated via a facile hydrothermal and following photo‐reduction method. The photocatalysts were characterized using X‐ray diffraction, scanning and transmission electron microscopies, X‐ray photoelectron spectroscopy and UV–visible diffuse reflectance spectroscopy. The characterization results indicated that Ag NPs were dispersed on the surface of MIL‐125(Ti) microspheres, and the Ag NPs had a uniform diameter of about 40 nm. The composites exhibited excellent visible‐light absorption, due to the modification with the Ag NPs. The photocatalytic activity for the visible‐light‐promoted degradation of Rhodamine B was improved through the optimization of the amount of Ag loaded as a co‐catalyst, this amount being determined as 3 wt%. Additionally, studies performed using radical scavengers indicated that O2? and e? served as the main reactive species. The catalyst can be reused at least five times without significant loss of its catalytic activity. Furthermore, a photocatalytic mechanism for degradation of organics over Ag@MIL‐125(Ti) is also proposed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Monodisperse ZnO colloidal spheres were produced by a two-stage sol–gel reaction process. The sub-micrometer sized ZnO/Ag composite spheres were prepared by photodeposition route. The photochemical reduction method needs no other reductant or surfactant and is an effective means to enable the uniform distribution of Ag nanoparticles (NPs) over the ZnO spheres. The size and shape as well as the optical properties of the composites were characterized with transmission electron microscopy and UV–Vis spectroscopy. The results showed that average size of ZnO and Ag NPs among the composites was around 480, 10 nm, respectively. Ag NPs were relatively monodisperse, presented spherical shape, and their deposition over the ZnO surface was uniform. Formation of Ag NPs on the surface of ZnO spheres was confirmed by X-ray diffraction and X-ray photoelectron spectroscopy, and the catalytic performance and antibacterial activity was also investigated. The ZnO/Ag composites possess excellent catalytic performance for catalytic reduction of 4-nitrophenol to 4-aminophenol and can effectively inhibit Escherichia coli and Bacillus subtilis growth at 0.25 mg/mL.  相似文献   

3.
The loading of noble‐metal nanoparticles (NMNPs) onto various carriers to obtain stable and highly efficient catalysts is currently an important strategy in the development of noble metal (NM)‐based catalytic reactions and their applications. We herein report a nanowire supramolecular assembly constructed from the surfactant‐encapsulating polyoxometalates (SEPs) CTAB‐PW12, which can act as new carriers for NMNPs. In this case, the Ag NPs are loaded onto the SEP nanowire assembly with a narrow size distribution from 5 to 20 nm in diameter; the average size is approximately 10 nm. The Ag NPs on the nanowire assemblies are well stabilized and the over agglomeration of Ag NPs is avoided owing to the existence of well‐arranged polyoxometalate (POM) units in the SEP assembly and the hydrophobic surfactant on the surface of the nanowire assembly. Furthermore, the loading amount of the Ag NPs can be adjusted by controlling the concentration of the AgNO3 aqueous solution. The resultant Ag/CTAB‐PW12 composite materials exhibit high activity and good stability for the catalytic reduction of 4‐nitrophenol (4‐NP) with NaBH4 in isopropanol/H2O solution. The NMNPs‐loaded SEP nanoassembly may represent a new composite catalyst system for application in NM‐based catalysis.  相似文献   

4.
Biodegradable copolymers have received much more attention in the last decades due their potential applications in the fields related to environmental protection, medicine, agriculture, and the chemical processes. Silver nanoparticles (Ag NPs) were prepared via reduction of silver nitrate (AgNO3) using biodegradable amphiphilic copolymers in aqueous solution. The micelles were constructed from the amphiphilic copolymer composed of poly(2-ethyl-2-oxazoline) and poly(ε-caprolactone). The Ag NPs with a diameter of 10–15?nm were found to show a comparable high catalytic activity toward the reduction of 4-nitrophenol (4-NP) in the presence of an excess amount of NaBH4. The synthesized Ag NPs-loaded copolymer exhibits high catalytic activity for the reduction of 4-NP to 4-aminophenol.  相似文献   

5.
首先通过乳液聚合和浓硫酸酸化制备表面富含磺酸根的磺化聚苯乙烯(PS)微球(直径532 nm),再用其静电吸附[Ag(NH_3)_2]~+离子,最后采用聚乙烯吡咯烷酮还原表面吸附的[Ag(NH_3)_2]~+离子,得到了负载银纳米粒子的PS/AgNPs复合微球.采用扫描电子显微镜、透射电子显微镜、紫外-可见光谱、红外光谱和X射线衍射表征了PS/AgNPs复合微球,并考察了其对甲基蓝(MB)的催化性能.结果表明,Ag纳米粒子高度分散在磺化PS微球表面;该PS/AgNPs复合微球对催化转化MB有较高的催化活性,并可多次重复利用.本研究在催化降解有机污染物方面有一定的实用价值.  相似文献   

6.
In this work, silver nanoparticles (Ag NPs) prepared through in situ green and facile synthesis by using nanofibrillated cellulose (NFC) hydrogel as support, stabilizer and reducing agent by two different methods. Their catalytic abilities were examined for conversion of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The structure of as-synthesized composites with different AgNO3 concentrations were characterized by ultraviolet–visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy; energy dispersive spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Results show that all nanocomposites demonstrated excellent catalytic activity. Among them, Ag@NFC-2 sample, with spherical and well-dispersed Ag NPs along the nanofiber, produced by the second method having 0.25 M AgNO3 concentration presented outstanding catalytic efficiency.  相似文献   

7.
The novel three-component Fe3O4/TiO2/Ag composite mircospheres were prepared via a facile chemical deposition route. The Fe3O4/TiO2 mircospheres were first prepared by the solvothermal method, and then Ag nanoparticles were anchored onto the out-layer of TiO2 by the tyrosine-reduced method. The as-prepared magnetic Fe3O4/TiO2/Ag composite mircospheres were applied as photocatalysis for the photocatalytic degradation of methylene blue. The results indicate that the photocatalytic activity of Fe3O4/TiO2/Ag composite microspheres is superior to that of Fe3O4/TiO2 due to the dual effects of the enhanced light absorption and reduction of photoelectron–hole pair recombination in TiO2 with the introduction of Ag NPs. Moreover, these magnetic Fe3O4/TiO2/Ag composite microspheres can be completely removed from the dispersion with the help of magnetic separation and reused with little or no loss of catalytic activity.  相似文献   

8.
This article presents a facile method for the preparation of polystyrene/silver (PS/Ag) composite microspheres. In this approach, monodisperse PS spheres were synthesized via dispersion polymerization and modified by sulfonation to obtain sulfonated PS spheres with sulfonic acid groups on the surfaces, and then adsorbed Sn2+ ions by electrostatic interaction and used as templates. PS/Ag composite microspheres were prepared successively by addition of [Ag(NH3)2]+ complex ions to the templates dispersion, adsorbing to the surfaces of templates, and then reduction of [Ag(NH3)2]+ complex ions to Ag nanoparticles by sodium potassium tartrate. The results showed that monodisperse PS spheres with sulfonic acid groups on the surfaces were coated by an incomplete and nonuniform coverage of Ag nanoparticles in the absence of Sn2+ ions. In the presence of Sn2+ ions, however, complete and uniform Ag nanoparticles coatings were obtained on the entire PS sphere. And the deposition density and size of Ag nanoparticles can be controlled by [Ag(NH3)2]+ concentration. The resulting PS/Ag composite microspheres were characterized by SEM, TEM, XRD, TGA, and UV-vis. Preliminary catalytical tests indicated these PS/Ag composite microspheres showed good catalytic properties.  相似文献   

9.
The Ag/SiO2 composites were synthesized based on porous blocked silica with a pore size of 30–50 nm and a specific surface area of 99 m2/g. Silver particles were introduced into the pores of the support by its impregnation with a solution of an ammonium complex of silver followed by reduction with hydrogen. The liquid-phase reduction of silver ions in pores was performed in the absence of stabilizing agents with the use of ethylene glycol (a polyol method) or formamide as a reducing agent. The methods used in the preparation of composites made it possible to vary the particle size of silver. The greatest size that is almost comparable with the pore size was achieved with the use of formamide. The catalytic activity of the Ag/SiO2 composites was studied in the reaction of CO oxidation. It was found that the catalysts obtained upon the reduction of Ag+ ions by formamide exhibited considerable low-temperature activity. A necessary condition for the manifestation of low-temperature activity is redox treatment, in the course of which the particle size of silver considerably decreases.  相似文献   

10.
In this work, we prepared high‐performance and recyclable nanocatalysts that consist of small and well‐dispersed silver nanoparticles (Ag NPs) immobilized onto Cu‐ based metal–organic framework (MOF‐199 s) supported by carboxymethylated cellulose fibers (CCFs). The as‐prepared green nanohybrid catalysts, namely Ag NPs@ MOF‐199 s/CCFs, were characterized using SEM, TEM, XRD and FT‐IR techniques. The catalytic performances showed that Ag NPs@ MOF‐199 s/CCFs catalysts exhibited a very high catalytic efficiency towards the reduction of 4‐nitrophenol to 4‐aminophenol. The enhanced catalytic performances are attributed to the improved dispersity, small particles of Ag NPs stabilized by the MOF‐199 s, and the porous catalyst structures. The introduction of cellulose fiber further facilitates the reuse and sustainability of the nanohybrid catalysts, showing a stable and high reusability (more than 91% of catalytic activity) even after five runs.  相似文献   

11.
In this study, nanocrystalline cellulose (NCC) prepared from microcrystalline cellulose using high‐intensity ultrasonication as mechanical method without any chemical treatment. The obtained NCC with around 30–50 nm diameters, utilized as support, reducing and stabilizing agent for in‐situ green and eco‐friendly synthesis of silver nanoparticles (Ag NPs). The catalytic activity of composite was examined for degradation of environmental pollutants. The structure of as‐synthesized composite (Ag@NCC) was characterized by ultraviolet–visible spectroscopy (UV–vis), field emission scanning electron microscopy (FE‐SEM); Transmission electron microscopy (TEM); Energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD) and thermogravimetric analysis (TGA). The results of the catalytic reaction experiments showed that spherically shaped silver nanoparticles of around 20 nm distributed on the surface of nanocellulose demonstrated high catalytic efficiency towards the removal of methyl orange (MO) and 4‐nitrophenol (4‐NP).  相似文献   

12.
Ag nanoparticles (NPs) modified ZnO microspheres (Ag/ZnO microspheres) were prepared by a facile one pot strategy in ethylene glycol (EG) medium. The EG played two important roles in the synthesis: it could act as a reaction media for the formation of ZnO and reduce Ag+ to Ag0. A series of the characterizations indicated the successful combination of Ag NPs with ZnO microspheres. It was shown that Ag modification could greatly enhance the photocatalytic efficiency of ZnO microspheres by taking the photodegradation of Rhodamine B as a model reaction. With appropriate ratio of Ag and ZnO, Ag/ZnO microspheres showed the better photocatalytic performance than commercial Degussa P-25 TiO2. Photoluminescence and surface photovoltage spectra demonstrated that Ag modification could effectively inhibit the recombination of the photoinduced electron and holes of ZnO. This is responsible for the higher photocatalytic activity of Ag/ZnO composites.  相似文献   

13.
The stabilizing role of carboxymethyl groups on the conformal deposition of Ag NPs over cellulosic fibers was elucidated while developing a method for the deposition of silver nanoparticles (NPs) on cellulose acetate (CA), cellulose and partially carboxymethylated cellulose (CMC) electrospun fibers. CMC fibers were prepared through judicious anionization of deacetylated cellulose acetate fibers. Ag NPs were chemically reduced from silver nitrate using sodium borohydride and further stabilized using citrate. Ag NPs were directly deposited onto CA, cellulose and CMC electrospun fibers at pH conditions ranging from 2.5 to 9.0. The resulting composites of Ag/fiber were characterized by field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray spectroscopy (EDX). The results revealed that the amount of Ag agglomerates and NPs deposited on CMC fibers was higher than that deposited on cellulose fibers at similar pH conditions, and that barely any Ag agglomerates or NPs were deposited on the CA fibers. These results implied that functional groups on the cellulose backbone played two important roles in the deposition of NPs as follows: (1) Hydrogen bonding was the main driving force for agglomeration of NPs when the medium pH was below 4.4, which corresponds to the pKa of carboxylic acid groups; (2) Carboxymethyl groups could replace citrate groups as stabilizers allowing the fabrication of a uniform and evenly distributed Ag NPs layer over CMC fibers at higher pH values. This report also highlights the importance of the substrate’s surface charge and that of the pH of the medium used, on the deposition of NPs. The composite of Ag NPs on CMC electrospun fibers appears to be a promising candidate for wound dressing applications due to its superior antibacterial properties originated by the uniform and even distribution of Ag NPs on the surface of the fibers and the wound healing aptness of the CMC fibers.  相似文献   

14.
Here,Ag_2S nanoparticles on reduced graphene oxide(Ag_2S NPs/RGO) nanocomposites with relatively good distribution are synthesized for the first time by conversing Ag NPs/RGO to Ag_2S NPs/RGO via a facile hydrothermal sulfurization method.As an noval catalyst for the reduction of 4-nitrophenol(4-NP),it only takes 5 min for Ag_2S NPs/RGO to reduce 98% of 4-NP,and the rate constant of the composites is almost 13 times higher than that of Ag NPs/RGO composites.The high catalytic activity of Ag_2S NPs/RGO can be attributed to the following three reasons:(1) Like metal complex catalysts,the Ag_2S NPs is also rich with metal center Ag(δ~+),with pendant base S(δ) close to it,and thus the Ag and basic S function as the electron-acceptor and proton-acceptor centers,respectively,which facilitates the catalyst reaction;(2)RGO features the high adsorption ability toward 4-NP which provides a high concentration of 4-NP near the Ag_2S NPs;and(3) electron transfer from RGO to Ag_2S NPs,facilitating the uptake of electrons by 4-NP molecules.  相似文献   

15.
张霞  陈莉  周春彬 《无机化学学报》2010,26(11):1934-1938
借助于PANI的还原性质,PANI/Fe2O3复合载体与AgNO3发生表面氧化还原反应,合成了Ag/PANI/Fe2O3复合纳米粒子。TEM和XRD结果表明,立方晶系纳米银的平均粒径10nm。FTIR结果表明,Ag与PANI及Fe2O3复合载体之间不存在化学键合作用,但由于PANI与Ag之间的电子相互作用,Ag/PANI/Fe2O3复合纳米粒子的FTIR吸收峰发生蓝移。Ag/PANI/Fe2O3复合纳米粒子对于间硝基苯磺酸钠的硼氢化钠还原反应表现出良好的催化活性,30min内间硝基苯磺酸钠的转化率达到86.77%。  相似文献   

16.
Ag/NiO composite nanosheets and empty microspheres were fabricated by calcining the precursors synthesized via hydrothermal and solvothermal procedures involved four methods. The as-prepared samples were characterized by thermogravimetric and differential thermal analysis, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and field emission scanning electron microscopy, respectively. The electrocatalytic properties of Ag/NiO composites modified on a glassy carbon electrode for p-nitrophenol reduction were investigated. The results showed that Ag/NiO composites exhibited highly enhanced electrocatalytic activity than a bare glassy carbon electrode, for not only the peak current increased clearly but also the corresponding peak potential decreased markedly. As a comparison, two NiO samples were used and the results showed that the peak current has an increase but the peak potentials have a slight decrease by comparing to a bare glassy carbon electrode. The Ag/NiO composites have the potential application in the electrocatalysis for the reduction of nitrophenol materials.  相似文献   

17.
This article presents a facile method to prepare silver/polystyrene composite microspheres. In this approach, monodispersed polystyrene (PS) particles were synthesized with carboxyl acid groups on the surfaces of the PS particles via dispersion polymerization at first. With the addition of [Ag(NH3)2]+ to the PS dispersion, [Ag(NH3)2]+ was absorbed to the surfaces of the PS particles, and then by heating the system, [Ag(NH3)2]+ complex ions were reduced to silver to form the Ag/PS composite microspheres. In the synthesis of PS dispersion, PVP was used as dispersant to stabilize the PS particles, it also acted as reducing agent in the reduction of [Ag(NH3)2]+ complex ions to silver, so no additional reducing agent was needed. The resulting composite microspheres were characterized by TEM, SEM, XPS, and XRD. The catalytic properties and surface‐enhance Raman scattering (SERS) was studied as well. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4547–4554, 2009  相似文献   

18.
以原位还原的方法一步合成了Ag/SBA-15复合催化剂,通过粉末XRD、TEM、ICP-AES和低温氮气吸附-脱附等手段对样品进行了表征.考察了不同催化剂对CO催化活性的影响,结果表明当金属纳米的尺寸大小为6~8nm左右,银的含量为6.86%时(Ag/SBA-15-3)的催化活性最高,在120℃时就可使CO完全氧化,可以重复使用,在100%的转化温度时保持200min转化率仍不降低.  相似文献   

19.
The present work deals with phytogenic synthesis of Ag NPs in the natural polymer alginate as support material using Aglaia elaeagnoidea leaf extract as a reducing, capping, and stabilizing agent. Ag nanoparticles embedded in alginate were characterized using UV–Vis absorption spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy techniques and selected area electron diffraction techniques. The formation of AgNPs embedded in the polymer was in spherical shape with an average size of 12 nm range has been noticed. The prepared embedded nanoparticles in polymer were evaluated as a solid heterogeneous catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) and methylene blue to leuco methylene blue in the liquid phase using sodium borohydride (NaBH4) as reducing agent. The silver nanoparticles embedded polymer exhibited extraordinary catalytic efficacy in reduction of 4-NP to 4-AP and the rate constant is 0.5054 min?1 at ambient conditions. The catalyst was recycled and reused up to 10 cycles without significant loss of catalytic activity. The preparation of Ag–CA composite was facile, stable, efficient, eco-friendly, easy to recycle, non-toxic, and cost effective for commercial application.  相似文献   

20.
Nowadays, the development of metal-metal sulfide interface semiconductors using green approach is best material for the photocatalytic and biological applications. Here, we provided for the first time, an environmentally friendly route to fabricate bovine serum albumin (BSA) assisted Ag@Bi2S3 composites through a metal-metal sulphide interface via a simple hydrothermal method for the evaluation of photochemical and biological applications. The synthesized composites were characterized by UV–vis DRS, PL, XRD, TEM, and N2 adsorption-desorption isotherms. The UV–vis DRS and PL spectra show that the obtained nano-sized Ag@Bi2S3 composite displays enhanced visible-light absorption and a decreased fluorescence emission compared to that of Bi2S3 nanorods (NRs). The photocatalytic performances of the synthesized composites were evaluated by the degradation of the single (RhB and MB) and mixed dye (RhB+MB) under sunlight irradiation. The results indicated that the Ag@Bi2S3 composite exhibits superior photocatalytic activity (98.38%) than that of individual Ag NPs and Bi2S3 NRs due to the synergistic effect of Ag and Bi2S3 nanophases in the Ag@Bi2S3 composite, which results in an effective charge separation, fast electron transfer from Ag to Bi2S3, and a low recombination of photo-induced electron-hole pairs. The Ag@Bi2S3 composite also has good recycling stability up to 5 cycles and its mechanism also investigated. The evaluation of reactive species during the photocatalytic reaction was also carried out. Further, the effects of Bi2S3 and Ag NPs on the antimicrobial and antioxidant activity of the resultant Ag@Bi2S3 composite were also systematically investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号