首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the cellulose ultrastructure on the relationship between cellulase binding and activity is not clear yet. In this article, a quartz crystal microbalance with dissipation (QCM-D) was employed to monitor the interactions between a given cellulase and the cellulose substrates with varied polymorphs of pure cellulose I and II and the intermediate state (I/II). Initially, cellulose nanocrystals (CNCs) with polymorphs of cellulose I, I/II and II were prepared and spin-coated on QCM sensors. The cellulose substrates’ crystallinity degree was examined by XRD, and morphology was detected by AFM. Then, a commercial cellulase from Trichoderma reesei was used to test the adsorption and hydrolysis of cellulose substrates with polymorphs of I, I/II and II, respectively. The results revealed that in the enzyme adsorption and desorption process at a temperature of 15 °C, CNC-II had the lowest adsorption capacity with a total adsorption mass of 179 ng cm?2 but the highest reversible binding ratio of 33.7%; for comparison, the values were 235 ng cm?2 versus 25.6% and 207 ng cm?2 versus 26.9% for CNC-I and -I/II, respectively. And the conformation of adlayers on CNC-I, -I/II and -II derived from the QCM data became softer and softer in turn. On the other hand, CNC-II exhibited the best enzymatic hydrolytic ability among three substrates when enzymatic hydrolysis experiments were conducted at 45 °C. The results indicated that polymorphic conversion from I to II changes the affinity between the enzyme and cellulose surface; CNC-II has the lowest affinity to the enzyme, but the softer conformation of the adsorbed enzyme layer, and the more reversible adsorption may facilitate its hydrolytic activity. This article gives a perspective from the adsorption dynamics and conformation of the adsorbed enzyme layer, helping to understand the superior hydrolytic activity of cellulose with polymorph II. Thus, there is a potential of polymorphic conversion in the reduction of enzyme dosage and cost in the enzymatic hydrolysis process.  相似文献   

2.
Curaua nanofibers extracted under different conditions were investigated. The raw fibers were mercerized with NaOH solutions; they were then submitted to acid hydrolysis using three different types of acids (H2SO4, a mixture of H2SO4/HCl and HCl). The fibers were analyzed by cellulose, lignin and hemicellulose contents; viscometry, X-ray diffraction (XRD) and thermal stability by thermogravimetric analysis (TG). The nanofibers were morphologically characterized by transmission electron microscopy (TEM) and their surface charges in suspensions were estimated by Zeta-potential. Their degree of polymerization (DP) was characterized by viscometry, crystallinity by XRD and thermal stability by TG. Increasing the NaOH solution concentration in the mercerization, there was a decrease of hemicellulose and lignin contents and consequently an increase of cellulose content. XRD patterns presented changes in the crystal structure from cellulose I to cellulose II when the fibers were mercerized with 17.5% NaOH solution. All curaua nanofibers presented a rod-like shape, an average diameter (D) of 6–10 nm and length (L) of 80–170 nm, with an aspect ratio (L/D) of around 13–17. The mercerization of fibers with NaOH solutions influenced the crystallinity index and thermal stability of the resulting nanofibers. The fibers mercerized with NaOH solution 17.5% resulted in more crystalline nanofibers, but thermally less stable and inferior DP. The aggregation state increases with the amount of HCl introduced into the extraction, due to the decrease of surface charges (as verified by Zeta Potential analysis). However, this release presented nanofibers with better thermal stability than those whose acid hydrolysis was carried out using only H2SO4.  相似文献   

3.
Cellulose nanofibers with a diameter of 70 nm and lengths of approximately 400 nm were fabricated from partly mercerized cotton fibers by acid hydrolysis. Morphological evolution of the hydrolyzed cotton fibers was investigated by powder X-ray diffraction, Fourier transform infrared analysis and field emission scanning electron microscopy. The XRD results show that the cellulose I was partially transformed into cellulose II by treatment with 15 % NaOH at 150° for 3 h. The crystallinity of this partially mercerized sample was lower than the samples that were converted completely to cellulose II by higher concentrations of NaOH. The intensities of all of the diffraction peaks were noticeably increased with increased hydrolysis time. Fourier transform infrared results revealed that the chemical composition of the remaining nanofibers of cellulose I and II had no observable change after acidic hydrolysis, and there was no difference between the hydrolysis rates for cellulose I or II. The formation of cellulose nanofibers involves three stages: net-like microfibril formation, then short microfibrils and finally nanofibers.  相似文献   

4.
The aim of the present work was to utilize waste leather buff (WLB) as filler in cellulose and make biocomposites for packaging applications such as wrappers. Cellulose was dissolved in the environmentally friendly ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). To this solution, WLB was added in amounts of 5 to 25 wt.% of cellulose. The cellulose and cellulose/WLB composite films were prepared by regenerating the corresponding cast solutions in a water coagulation bath followed by washing and drying. These films were tested for their tensile properties, thermal stability, and morphology. The tensile modulus and strength of the composite films were lower than those of the matrix. The lowering of the tensile modulus and strength with increasing WLB loading was attributed to the random orientation of the leather fibers of WLB in the composites. However, the % elongation at break of the composite films was found to be higher than that of the matrix and increased with increasing WLB content. The possible interaction between the matrix and WLB filler was probed using FT-IR analysis. The thermal stability of the composite films was higher than that of the matrix. The increase in thermal stability of the composite films was attributed to cross-linked collagen protein leather fibers in WLB. The fractographs of the composite films indicated good interfacial bonding between cellulose and leather fibers of WLB. These composite films may be considered for packaging and wrapping applications.  相似文献   

5.
A softwood bleached kraft pulp (SBKP) and cotton lint cellulose were fully or partially mercerized, and these along with celluloses and commercially available regenerated cellulose fiber and beads were oxidized by 4-acetamido-TEMPO/NaClO/NaClO2 at 60 °C and pH 4.8. Weight recovery ratios and carboxylate contents of the oxidized celluloses were 65–80% and 1.8–2.2 mmol g−1, respectively. Transparent and viscous dispersions were obtained by mechanical disintegration of the TEMPO-oxidized celluloses in water. These aqueous dispersions showed birefringence between cross-polarizers, indicating that mostly individualized cellulose nanoelements dispersed in water were obtained by these procedures. Transmission electron microscopy observation showed that the cellulose nanoelements prepared from mercerized SBKP, repeatedly mercerized SBKP, mercerized cotton lint cellulose, regenerated cellulose beads and 18% NaOH-treated SBKP, i.e. partially mercerized SBKP, had similar morphologies and sizes, 4–12 nm in width and 100–200 nm in length. The 18% NaOH-treated SBKP was converted to cellulose nanoelements consisting of both celluloses I and II.  相似文献   

6.
The graft copolymerization of 4-vinylpyridine was carried out on mercerized cellulose and partially carboxymethylated cellulose (PCMC) using eerie ammonium nitrate (CAN) as the initiator. the grafting parameters (grafting efficiency (GE), graft yield (G), and total conversion (C1)) were studied as a function of CAN concentration. It was shown that by increasing the CAN concentration, G and C, reached a maximum. the graft yields for PCMC were significantly higher than those for mercerized cellulose. the largest GE values appeared for PCMC and mercerized cellulose at low and high CAN concentrations, respectively. the Ce(IV) consumption during grafting increased with rising concentration of CAN, and it was greater in the case of PCMC than of mercerized cellulose. After acid hydrolysis of the polysaccharide backbone, the average molecular weight of grafts was determined viscometrically. Molecular weight decreased with initiator concentration. Graft frequency (GF), on the other hand, increased with CAN concentration. GF for PCMC was higher than that for mercerized cellulose. Ce(IV) consumption increased with CAN concentration and it was lower for mercerized cellulose than that consumed during grafting on PCMC. After that, the effect of CAN concentration on the graft copolymerization onto PCMC was examined while the total nitrate ion concentration was maintained constant at 1.59 M by addition of sodium nitrate. Maximum G, C1 and Ce(IV) consumption were higher than in the previous case.  相似文献   

7.
The effect of several fiber surface treatments upon the dynamic mechanical behavior of piassava fiber-reinforced composites was evaluated. In the light of the experimental results obtained the critical volume fraction for the fibers to effectively perform as reinforcement was established. The results show that all treatments performed (mercerization, acetylation, and mercerization + acetylation) enhance the fiber/matrix adhesion, but some treatments also affect the fiber’s integrity. At the elastic region the storage modulus of the composites fabricated with treated fibers was higher than that of the untreated fiber-reinforced composite. However, only the composite manufactured with 10 wt% mercerized fibers showed a statistically significant increase of the storage modulus. Above T g the storage modulus was primarily governed by the volume fraction of fibers. Therefore, raw and treated fiber composites had essentially the same behavior.  相似文献   

8.
Biocomposite materials based on Alfa cellulose fibers (esparto grass plant) as reinforcing element and starch‐based biopolymer matrix were prepared and characterized in terms of mechanical performance, thermal properties, and water absorbance behavior. The fibers and the matrix were first mixed in the melted state under mechanical shearing using a plastograph and the obtained composites were molded by injection process. The tensile mechanical analysis showed a linear increase of the composite flexural and tensile modulus upon increasing the fiber content, together with a sharp decrease of the elongation at break. The fibers′ incorporation into the biopolymer matrix brings about an enhancement in the mechanical strength and the impact strength of the composite. Dynamic mechanical thermal analysis (DMTA) investigation showed two relaxations occurring at about ?30 and 35°C. The addition of Alfa fibers enhanced the storage modulus E′ before and after Tα, which is consistent with the reinforcing effect of Alfa cellulose fibers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Preparation of Polyuronic Acid from Cellulose by TEMPO-mediated Oxidation   总被引:11,自引:8,他引:11  
Various cellulose samples were oxidized by 2,2,6,6,-tetramethylpipelidine-1-oxyl radical (TEMPO)-NaBr-NaClO systems, and the effects of oxidation conditions on chemical structures and degrees of polymerization of the products obtained were studied. In the case of regenerated and mercerized celluloses, almost all C6 primary alcohol groups were selectively oxidized to carboxyl groups, and water-soluble polyglucuronic acid (cellouronic acid) sodium salts were obtained almost quantitatively; the degrees of polymerization were influenced greatly by the amount of TEMPO added, and the oxidation time and temperatures. Cellouronic acids prepared from mercerized linter and kraft pulps had size exclusion chromatograms with two separate peaks due to higher and lower molecular weight fractions. On the other hand, only small amounts of carboxyl groups were introduced into native cellulose samples. Since polyglucuronic acids prepared from cellulose by the TEMPO–NaBr– NaClO systems regularly consist of the glucuronic acid repeating unit, differing from the conventional water-soluble cellulose derivatives, they may open new fields of cellulose utilization.  相似文献   

10.

The objective of this work is the use of cellulose fibers extracted from coir fibers as Janus nanocylinders to suppress the phase retraction and coalescence in poly(lactic) acid/polypropylene bio-blend polymers via prompting the selective localization of cellulose fibers at the interface using chemical modification. The untreated and modified cellulose fibers extracted from coir fibers using a silane molecule (tetraethoxysilane) were used as reinforcement and as Janus nanocylinder at two weight contents (2.5 wt% and 5 wt%) to manipulate the morphology of the bio-blends. Their bio-composites with PLA-PP matrix were prepared via melt compounding (at PLA/PP: 50/50). The treatment effect on component interaction and the bio-composites properties have been studied via Scanning electron microscopy, infrared spectroscopy, and differential calorimetry analysis. The mechanical and rheological properties of nanocomposites were similarly assessed. Young's modulus and tensile strength of PLA-PP nanocomposites reinforced by silanized cellulose fibers show a great enhancement as compared to a neat matrix. In particular, there was a gain of 18.5% in Young's modulus and 11.21% in tensile strength for silanized cellulose fiber-based bio-blend composites at 5 wt%. From the rheological point of view, it was found that the silanized cellulose fibers in PLA-PP at both fibers loading enhances the adhesion between both polymers leading to tuning their morphology from sea-island to the continuous structures with the appearance of PLA microfibrillar inside of bio-composites. This change was reflected in the relaxation of the chain mobility of the bio-blend composites.

  相似文献   

11.
The effects of surface treatment using potassium permanganate on ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were investigated. The results showed the surface roughness and the oxygen-containing groups on the surface of the modified fibers were effectively increased. The NR matrix composites were prepared with as-received and modified UHMWPE fibers added 0–6 wt%. The treated fibers increased the modulus and tensile stress at a given elongation. The tear strength increased with increasing fiber mass fraction, attained maximum values at 4 wt%. The hardness of composites exhibited continuous increase with increasing the fiber content. The dynamic mechanical tests showed that the storage modulus and the tangent of the loss angle were decreased in the modified UHMWPE fibers/NR composites. Several micro-fibrillations between the treated fiber and NR matrix were observed, which meant the interfacial adhesion strength was improved.  相似文献   

12.
In the present paper, starch-based biocomposites have been prepared by reinforcing corn starch matrix with mercerized Abelmoschus esculentus lignocellulosic fibers. The effect of fiber content on mechanical properties of composite was investigated and found that tensile strength, compressive strength, and flexural strength at optimum fiber content were 69.1%, 93.7% and 105.1% increased to that of cross-linked corn starch matrix, respectively. The corn starch matrix and its composites were characterized by Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric (TGA) analysis. The fiber reinforced composites were found to be highly thermal stable as compared to natural corn starch and cross-linked corn starch matrix. Further, water uptake and biodegradation studies of matrix and composites have also been studied.  相似文献   

13.
This article presents a comprehensive characterization study of natural cellulosic fiber extracted from Passiflora foetida vine stem. The chemical composition of the obtained P. foetida fibers (PFFs) comprised high cellulose (77.9 wt%) and low lignin (10.47 wt%) content and had distinctly higher crystallinity (67.36%) of cellulose, which was determined by an X-ray diffractometer. The PFFs exhibited good tensile strength of 248?942 MPa associated with elongation (1.38?4.67%) during tensile testing. Thermogravimetric analysis revealed that the PFFs are thermally stable up to 320°C with kinetic activation energy of 85.46 kJ mol?1; hence they ensure their suitability as a reinforcing phase in composites for potential applications.  相似文献   

14.
Physical structures of aqueous cellulose nanocrystal (CNC) suspensions in anionic polyelectrolyte carboxymethyl cellulose (CMC) and non-ionic poly(ethylene oxide) (PEO) were investigated by studying their cross polarized, polarized optical microscope (POM) images and dynamic light scattering, zeta potential, 1H spin–lattice relaxation nuclear magnetic resonance (NMR) data. The presence of anionic CMC and nonionic PEO in CNC suspensions led to two different kind of interactions. Semi-dilute CNC suspensions showed first gel-like behavior then phase separation by adding only semi-dilute un-entangled CMC polymer solutions, whereas the addition of PEO didn’t cause any significant change. POM images showed the phase transitions of CNC suspensions in the presence of CMC solutions from the isotropic state to nematic and chiral nematic phases. Dynamic light scattering, zeta potential and 1H spin–lattice relaxation NMR data presented further arguments to explain polymer-CNC interactions in CMC and PEO solutions. 1H NMR solvent relaxation technique determined the adsorption and depletion interactions between polymers and CNC. The minima in spin–spin specific relaxation rate constant showed the depletion of CNC nanoparticles in CMC. It is believed that the depletion flocculation was the case for the effects of CMC polymer chains in CNC suspensions. PEO was adsorbed on CNC surfaces and caused only weak depletion interactions due to the presence of soft particles.  相似文献   

15.
Well-dispersed cellulose II nanofibers with high purity of 92 % and uniform width of 15–40 nm were isolated from wood and compared to cellulose I nanofibers. First, ground wood powder was purified by series of chemical treatments. The resulting purified pulp was treated with 17.5 wt% sodium hydroxide (NaOH) solution to mercerize the cellulose. The mercerized pulp was further mechanically nanofibrillated to isolate the nanofibers. X-ray diffraction patterns revealed that the purified pulp had been transformed into the cellulose II crystal structure after treatment with 17.5 wt% NaOH, and the cellulose II polymorph was retained after nanofibrillation. The cellulose II nanofiber sheet exhibited a decrease in Young’s modulus (8.6 GPa) and an increase in fracture strain (13.6 %) compared to the values for a cellulose I nanofiber sheet (11.8 GPa and 7.5 %, respectively), which translated into improved toughness. The cellulose II nanofiber sheet also showed a very low thermal expansion coefficient of 15.9 ppm/K in the range of 20–150 °C. Thermogravimetric analysis indicated that the cellulose II nanofiber sheet had better thermal stability than the cellulose I nanofiber sheet, which was likely due to the stronger hydrogen bonds in cellulose II crystal structure, as well as the higher purity of the cellulose II nanofibers.  相似文献   

16.
Isolation and characterization of cellulose nanofibers from banana peels   总被引:2,自引:0,他引:2  
Cellulose nanofibers were isolated from banana peel using a combination of chemical treatments, such as alkaline treatment, bleaching, and acid hydrolysis. The suspensions of chemically treated fibers were then passed through a high-pressure homogenizer 3, 5, and 7 times, to investigate the effect of the number of passages on the properties of the resulting cellulose nanofibers. The cellulose nanofibers isolated in this study had a dry basis yield of 5.1 %. Transmission electron microscopy showed that all treatments effectively isolated banana fibers in the nanometer scale. The micrographs of the process steps used to isolate the nanofibers revealed gradual removal of amorphous components. Increasing number of passages in the homogenizer shortened the cellulose nanofibers while furnishing more stable aqueous suspensions with zeta potential values ranging from ?16.1 to ?44.1 mV. All the samples presented aspect ratio in the range of long nanofibers, hence being potentially applicable as reinforcing agents in composites. X-ray diffraction studies revealed that homogenized nanofiber suspensions were more crystalline than non-homogenized suspensions. Fourier transform infrared spectroscopy confirmed that alkaline treatment and bleaching removed most of the hemicellulose and lignin components present in the banana fibers. Thermal analyses revealed that the developed nanofibers exhibit enhanced thermal properties. In general, the nanoparticles isolated from the banana peel have potential application as reinforcing elements in a variety of polymer composite systems.  相似文献   

17.
Chitin nanofibers extracted from crab shell were used to reinforce polylactic acid (PLA) by extrusion molding. The dispersion problem of nanofibers in PLA matrix was solved by three pretreatment methods, including water pretreatment, polyethylene glycol (PEG) pretreatment, and polyethylene oxide (PEO) pretreatment. The results demonstrated that chitin nanofibers were distributed uniformly on the fracture surface of the PLA matrix with three different pretreatment methods. However, the aspect ratio of nanofibers with was reduced with the PEG and PEO pretreatment methods. Therefore, the bending modulus (MOE), bending strength (MOR) and impact toughness of the chitin nanofibers/PLA composites prepared by the water pretreatment method were much higher than those of the composites prepared by the PEG and the PEO pretreatment method. Furthermore, the reinforcing effect with the PEG method is slightly better than that with the PEO method. Although it was found that both PEG and PEO were good interfacial compatibilizers for nanofibers and PLA, the reinforcing effect of the composites prepared by PEG and PEO pretreat methods was suppressed due to the decrease of the aspect ratio for chitin nanofibers.  相似文献   

18.
Composites of cellulose fibers were made with paper-making technology. Two types of microfibrillated cellulose (MFC), obtained by with either homogenization or ball milling, were blended with hardwood fibers to give composites having high strength and low air permeability. The strengthening effects of the MFCs were compared with strengthening by cellulose microparticles (CMPs) made by cryogenic milling, with and without polyamideamine-epichlorohydrin addition. The MFC from homogenization was fully retained on the fiber web due to a broad size distribution; in contrast, the retention ratio for MFC produced by ball milling was lower than 50 % because of its smaller particle size. The small size caused the resulting paper to display a more compact and denser structure. The main distinction between the papers made with the two types of MFC was the elongation at break under wet conditions, suggesting that they reinforce the paper in different ways. On the other hand, CMPs act as mechanical debonders and could find application in tissue paper, increasing paper bulk and decreasing the density and thus improve tissue softness.  相似文献   

19.
Upon swelling and dissolution, native cellulose fibers such as cotton hairs or wood fibers are rotating and contracting. Regenerated cellulose fibers are only contracting, not rotating. Cotton hairs show two rotation mechanisms, a well known untwisting, not seen in wood fibers, due to the unwinding of the twists initially induced by the desiccation that occurs at the end of the growth, and a “microscopic rotation” that can also be slightly observed in wood fibers. In addition to these rotation mechanisms, cotton hairs and wood fibers show a rolling up of their primary wall that is due to the higher elongation of the external layers as compared to the internal layers arising during the elongation phase of the cell. Contraction originates from the fact that the cellulose chains are in an extended conformational state due to the spinning process for the regenerated fibers and to the bio-deposition process for native fibers. The contraction is related to the relaxation of the mean conformation of cellulose chains from an extended state to a more condensed state. Physical as well as mechanical modeling will support the experimental observations.  相似文献   

20.
In this study, a composite of thermoplastic polyurethane reinforced with short Kenaf fiber (Hibiscus cannabinus) was prepared via melt-blending method using Haake Polydrive R600 internal mixer. Effect of various sodium hydroxide NaOH concentrations, namely 2, 4 and 6% on tensile, flexural and impact strength was studied. Mean values were determined for each composite according to ASTM standards. Tensile, flexural and impact strength negatively correlates with higher concentrations of NaOH. Scanning electron microscope (SEM) was used to examine the surface of both treated and untreated fibers as well as fracture surface of tensile specimens. Morphology of treated and untreated fibers showed a rougher surface of treated fibers. It also showed that some of high concentrations of NaOH treated fibers have NaOH residues on their surface. This was confirmed by energy dispersive X-ray point shooting performed on the same SEM machine. Morphology of surface of fracture indicated that untreated composite had a better adhesion. Treated and untreated fibers as well as composites were characterized using Fourier transform infrared spectroscopy (FTIR). FTIR of treated fibers showed that NaOH treatment resulted in removal of hemicelluloses and lignin. FTIR also showed that untreated composite has more H-bonding than all treated composites. Thermal characteristic studies using thermogravimetry analysis and differential scanning calorimetry showed that untreated composite was more thermally stable than treated composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号