首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural stability and electronic-structure of icosahedral La(13), La(-1) (13), and La(+1) (13) clusters have been studied by DMOL cluster method based on density-functional theory. The ground state of all-electron with relativity results is shown to be a distorted D(2h) icosahedron by the Jahn-Teller effect. However, the binding energies of D(3d) and D(5d) are very close to that of the D(2h) structure for La(13), La(-1) (13), and La(+1) (13) clusters. The effective core potential results show that the true ground state is D(5d) structure. The clusters have small magnetic moments and the symmetry of cluster is an important factor in determining the magnetic moments of the clusters. The effects of interatomic spacing and coordination on atomic magnetic moment are discussed. Further, 5d electrons dominate the hybrid orbitals below the Fermi level in the neutral cluster and contribute the main spin of clusters.  相似文献   

2.
The geometric and electronic structures of Si(n), Si(n)-, and PSi(n-1) clusters (2 < or = n < or = 13) have been investigated using the ab initio molecular orbital theory formalism. The hybrid exchange-correlation energy functional (B3LYP) and a standard split-valence basis set with polarization functions (6-31+G(d)) were employed to optimize geometrical configurations. The total energies of the lowest energy isomers thus obtained were recalculated at the MP2/aug-cc-pVTZ level of theory. Unlike positively charged clusters, which showed similar structural behavior as that of neutral clusters [Nigam et al., J. Chem. Phys. 121, 7756 (2004)], significant geometrical changes were observed between Si(n) and Si(n)- clusters for n = 6, 8, 11, and 13. However, the geometries of P substituted silicon clusters show similar growth as that of negatively charged Si(n) clusters with small local distortions. The relative stability as a function of cluster size has been verified based on their binding energies, second difference in energy (Delta2 E), and fragmentation behavior. In general, the average binding energy of Si(n)- clusters is found to be higher than that of Si(n) clusters. For isoelectronic PSi(n-1) clusters, it is found that although for small clusters (n < 4) substitution of P atom improves the binding energy of Si(n) clusters, for larger clusters (n > or = 4) the effect is opposite. The fragmentation behavior of these clusters reveals that while small clusters prefer to evaporate monomer, the larger ones dissociate into two stable clusters of smaller size. The adiabatic electron affinities of Si(n) clusters and vertical detachment energies of Si(n)- clusters were calculated and compared with available experimental results. Finally, a good agreement between experimental and our theoretical results suggests good prediction of the lowest energy isomeric structures for all clusters calculated in the present study.  相似文献   

3.
We report results for the ground-state energy and structural properties of small (4)He-T↓ clusters consisting of up to four T↓ and eight (4)He atoms. These results have been obtained using very well-known (4)He-(4)He and T↓- T↓ interaction potentials and several models for the (4)He- T↓ interatomic potential. All the calculations have been performed with variational and diffusion Monte Carlo methods. It takes at least three atoms to form a mixed bound state. In particular, for small clusters the binding energies are significantly affected by the precise form of the (4)He- T↓ interatomic potential but the stability limits remain unchanged. The only exception is the (4)He(2)T↓ trimer whose stability in the case of the weakest (4)He- T↓ interaction potential is uncertain while it seems stable for other potentials. The mixed trimer (4)He(T↓)(2), a candidate for the Borromean state, is not bound. All other studied clusters are stable. Some of the weakest bound clusters can be classified as quantum halo as a consequence of having high probability of being in a classically forbidden region.  相似文献   

4.
A global optimization of stoichiometric (AlN)(n) clusters (n = 1-25, 30, 35, ..., 95, 100) has been performed using the basin-hopping (BH) method and describing the interactions with simple and yet realistic interatomic potentials. The results for the smaller isomers agree with those of previous electronic structure calculations, thus validating the present scheme. The lowest-energy isomers found can be classified in three different categories according to their structural motifs: (i) small clusters (n = 2-5), with planar ring structures and 2-fold coordination, (ii) medium clusters (n = 6-40), where a competition between stacked rings and globular-like empty cages exists, and (iii) large clusters (n > 40), large enough to mix different elements of the previous stage. All the atoms in small and medium-sized clusters are in the surface, while large clusters start to display interior atoms. Large clusters display a competition between tetrahedral and octahedral-like features: the former lead to a lower energy interior in the cluster, while the latter allow for surface terminations with a lower energy. All of the properties studied present different regimes according to the above classification. It is of particular interest that the local properties of the interior atoms do converge to the bulk limit. The isomers with n = 6 and 12 are specially stable with respect to the gain or loss of AlN molecules.  相似文献   

5.
6.
The potential energy surface of the Fe dimer is investigated on the basis of density functional theory in the generalized gradient approximation (GGA). Electron correlation effects are taken into account explicitly within the GGA+U approach. We find a value of 2.20 eV for the Coulomb repulsion parameter U to describe the Fe dimer best, yielding a 9 Sigma(g)- ground state with an interatomic separation of 2.143 A. Agreement of the associated vibrational frequency, binding energy, ionization potential, and electron affinity with experimental data as well as corresponding results calculated within a high-level ab initio approach is improved significantly compared to conventional GGA. The effect of U on calculated geometric and magnetic properties of larger Fe clusters is discussed.  相似文献   

7.
Con(n=2~10)团簇的结构和磁性   总被引:2,自引:0,他引:2  
采用密度泛函理论中的局域自旋密度近似(LSDA)和广义梯度近似(GGA)对Con(n=2~10)团簇的几何构型进行优化,并对能量、频率和磁性进行了计算,两种方法确定的基态构型完全一致,并从平均键长、平均配位数和对称性对磁性的影响进行了理论探讨.研究表明, Con(n=2~10)基态团簇的磁性在n=2~4时主要受平均键长的影响,在n=5~9时主要受平均配位数的影响,在n=10时受原子间距和平均配位数的相互影响,最终导致与Co8基态团簇具有相同的磁性.基态团簇在Co5和Co9出现了磁性局域最小点.  相似文献   

8.
The structure and properties of small neutral and cationic CrGen(0,+) clusters, with n from 1 to 5, were investigated using quantum chemical calculations at the CASSCF/CASPT2 and DFT/B3LYP levels. Smaller clusters prefer planar geometries, whereas the lowest-lying electronic states of the neutral CrGe4, CrGe5, and cationic CrGe5+ forms exhibit nonplanar geometries. Most of the clusters considered prefer structures with high-spin ground state and large magnetic moments. Relative to the values obtained for the pure Gen clusters, fragmentation energies of doped CrGen clusters are smaller when n is 3 and 4 and larger when n = 5. The averaged binding energy tends to increase with the increasing number of Ge atoms. For n = 5, the binding energies for Ge5, CrGe5, and CrGe5+ are similar to each other, amounting to approximately 2.5 eV. The Cr atom acts as a general electron donor in neutral CrGen clusters. Electron localization function (ELF) analyses suggest that the chemical bonding in chromium-doped germanium clusters differs from that of their pure or Li-doped counterparts and allow the origin of the inherent high-spin ground state to be understood. The differential DeltaELF picture, obtained in separating both alpha and beta electron components, is consistent with that derived from spin density calculations. For CrGen, n = 2 and 3, a small amount of d-pi back-donation is anticipated within the framework of the proposed bonding model.  相似文献   

9.
Bi(m)M(n)- (M = Si, Ge, Sn) binary cluster anions are generated by using laser ablation on mixtures of Bi and M (M = Si, Ge, Sn) samples and studied by reflectron time-of-flight mass spectrometer (RTOF-MS) in the gas phase. Some magic number clusters are present in the mass spectra which indicate that they are in stable structures. For small anions (m + n < or = 6), their structures are investigated with the DFT method and the energetically lowest lying structures are obtained. For the binary anionic clusters with the same composition containing Si, Ge, and Sn, they share similar geometric and electronic structure in the small size except that BiSi3-, BiSi5-, Bi2Si2-, Bi2Si3-, and Bi4Sn2- are different for the lowest energetic structures, and the ground states for all the anions are in their lowest spin states. The calculated VDE (vertical detachment energy) and binding energy confirm the obviously magic number cluster of BiM4- (M = Si, Ge, Sn), which agrees with the experimental results.  相似文献   

10.
Density functional calculations have been performed for small nickel clusters, Ni(n), Ni(n) (+), and Ni(n)(-) (n相似文献   

11.
The geometric and electronic structures of the Pbn+ clusters (n=2-15) have been investigated and compared with neutral clusters. The search for several low-lying isomers was carried out under the framework of the density functional theory formalism using the generalized gradient approximation for the exchange correlation energy. The wave functions were expanded using a plane wave basis set and the electron-ion interactions have been described by the projector augmented wave method. The ground state geometries of the singly positively charged Pbn+ clusters showed compact growth pattern as those observed for neutrals with small local distortions. Based on the total energy of the lowest energy isomers, a systematic analysis was carried out to obtain the physicochemical properties, viz., binding energy, second order difference in energy, and fragmentation behavior. It is found that n=4, 7, 10, and 13 clusters are more stable than their neighbors, reflecting good agreement with experimental observation. The chemical stability of these clusters was analyzed by evaluating their energy gap between the highest occupied and lowest unoccupied molecular orbitals and adiabatic ionization potentials. The results revealed that, although Pb13 showed higher stability from the total energy analysis, its energy gap and ionization potential do not follow the trend. Albeit of higher stability in terms of binding energy, the lower ionization potential of Pb13 is interesting which has been explained based on its electronic structure through the density of states and electron shell filling model of spherical clusters.  相似文献   

12.
The localization and propagation of electronic excitation is studied in a one-dimensional lattice of atoms, in which the interatomic potential is of Lennard-Jones (9-6) form. The dynamics are followed taking account of the full potential, bringing out aspects that do not appear in the harmonic approximation. Calculations are made first in a continuum model, and tested numerically for real systems. Electronic excitation of an atom may cause a change in its dispersive binding to neighbours, and there can be resonance coupling leading to excitation transfer and delocalization. With resonance coupling only, i.e. with no change in the dispersion interaction, the new result is found that there can be localization into states below the exciton band, arising from the changes in the strength of resonance coupling caused by variations in lattice spacing. These states become deeper when a change in dispersion energy is added; they can propagate as solitons without energy loss when the dispersion energy change is small; for larger changes the excitation is trapped.  相似文献   

13.
This is the first paper in a series of four dealing with the adsorption site, electronic structure, and chemistry of small Au clusters, Au(n) (n=1-7), supported on stoichiometric, partially reduced, or partially hydroxylated rutile TiO(2)(110) surfaces. Analysis of the electronic structure reveals that the main contribution to the binding energy is the overlap between the highest occupied molecular orbitals of Au clusters and the Kohn-Sham orbitals localized on the bridging and the in-plane oxygen of the rutile TiO(2)(110) surface. The structure of adsorbed Au(n) differs from that in the gas phase mostly because the cluster wants to maximize this orbital overlap and to increase the number of Au-O bonds. For example, the equilibrium structures of Au(5) and Au(7) are planar in the gas phase, while the adsorbed Au(5) has a distorted two-dimensional structure and the adsorbed Au(7) is three-dimensional. The dissociation of an adsorbed cluster into two adsorbed fragments is endothermic, for all clusters, by at least 0.8 eV. This does not mean that the gas-phase clusters hitting the surface with kinetic energy greater than 0.8 eV will fragment. To place enough energy in the reaction coordinate for fragmentation, the impact kinetic energy needs to be substantially higher than 0.8 eV. We have also calculated the interaction energy between all pairs of Au clusters. These interactions are small except when a Au monomer is coadsorbed with a Au(n) with odd n. In this case the interaction energy is of the order of 0.7 eV and the two clusters interact through the support even when they are fairly far apart. This happens because the adsorption of a Au(n) cluster places electrons in the states of the bottom of the conduction band and these electrons help the Au monomer to bind to the five-coordinated Ti atoms on the surface.  相似文献   

14.
The geometry and electronic properties of three-ring tubular B(3n) clusters (n = 8-32) are studied systematically with the density functional theory. It is composed of three staggered rings with the diameter of the middle ring larger than those of the two outer rings. With the increase in boron atom numbers, the three-ring tubular clusters are energetically more stable than the double-ring and four-ring tubular clusters and the buckled sheet clusters with hexagon holes. The average binding energy tends to the finite value. The stability is further analyzed through the natural bond orbital population analysis. The highest occupied and lowest unoccupied energy gaps become small, which demonstrates a favorable metallic property.  相似文献   

15.
The geometric and electronic structures of Si(n), Si(n) (+), and AlSi(n-1) clusters (2< or =n< or =13) have been investigated using the ab initio molecular orbital theory under the density functional theory formalism. The hybrid exchange-correlation energy function (B3LYP) and a standard split-valence basis set with polarization functions [6-31G(d)] were employed for this purpose. Relative stabilities of these clusters have been analyzed based on their binding energies, second difference in energy (Delta (2)E) and fragmentation behavior. The equilibrium geometry of the neutral and charged Si(n) clusters show similar structural growth. However, significant differences have been observed in the electronic structure leading to their different stability pattern. While for neutral clusters, the Si(10) is magic, the extra stability of the Si(11) (+) cluster over the Si(10) (+) and Si(12) (+) bears evidence for the magic behavior of the Si(11) (+) cluster, which is in excellent agreement with the recent experimental observations. Similarly for AlSi(n-1) clusters, which is isoelectronic with Si(n) (+) clusters show extra stability of the AlSi(10) cluster suggesting the influence of the electronic structures for different stabilities between neutral and charged clusters. The ground state geometries of the AlSi(n-1) clusters show that the impurity Al atom prefers to substitute for the Si atom, that has the highest coordination number in the host Si(n) cluster. The fragmentation behavior of all these clusters show that while small clusters prefers to evaporate monomer, the larger ones dissociate into two stable clusters of smaller size.  相似文献   

16.
Geometries and energy separations of the various low-lying electronic states of Nb(n) and Nb(n) (-) (n=4,5) clusters with various structural arrangements have been investigated. The complete active space multiconfiguration self-consistent field method followed by multireference singles and doubles configuration interaction (MRSDCI) calculations that included up to 52x10(6) configuration spin functions have been used to compute several electronic states of these clusters. The ground states of both Nb(4) ((1)A('), pyramidal) and Nb(4) (-) ((2)B(3g), rhombus) are low-spin states at the MRSDCI level. The ground state of Nb(5) cluster is a doublet with a distorted trigonal bipyramid (DTB) structure. The anionic cluster of Nb(5) has two competitive ground states with singlet and triplet multiplicities (DTB). The low-lying electronic states of these clusters have been found to be distorted due to Jahn-Teller effect. On the basis of the energy separations of our computed electronic states of Nb(4) and Nb(5), we have assigned the observed photoelectron spectrum of Nb(n) (-) (n=4,5) clusters. We have also compared our MRSDCI results with density functional calculations. The electron affinity, ionization potential, dissociation and atomization energies of Nb(4) and Nb(5) have been calculated and the results have been found to be in excellent agreement with the experiment.  相似文献   

17.
The structural and electronic properties of In(n)N(n=1-13) clusters have been investigated by density-functional theory with the generalized gradient approximation. The results indicate that the equilibrium structures of In(n)N are linear for n=1,2, planar for n=3-5, and three dimensional for n=6-13. Maximum peaks were observed for In(n)N clusters at n=3,7,9 on the size dependence for second-order energy difference. These imply that these clusters possess relatively higher stability, which is consistent with the case of binding energy per atom. Moreover, the results show that the bonding in small In(n)N clusters has a little ionic character by Mulliken population analysis. The energy gap between the highest occupied and lowest unoccupied molecular orbitals, the vertical ionization potential and electron vertical affinity (VIP and VEA) form an even-odd alternating pattern with increasing cluster size. In general, the VIP tends to lower as the cluster size increases, while the VEA tends to increase as the cluster size increases.  相似文献   

18.
The structural, electronic, and magnetic properties of cobalt-benzene complexes (Co(n)Bz(m), n, m = 1-4, m = n, n + 1) have been explored within the framework of an all electron gradient-corrected density functional theory. Sandwich conformations are energetically preferred for the smallest series of n, m = 1-2, rice-ball structures are for larger sizes with n > or = 3, and both motifs coexist for Co(2)Bz(3). The rice-ball clusters of (3, 3) and (4, 4) are more stable than (3, 4) having a relative large binding energy and HOMO-LUMO gap whereas smaller sandwich clusters have highly kinetic stability at (n, n + 1). The computed ionization potentials and magnetic moments of Co(n)Bz(m) are in good agreement with the measured values overall; the present results suggest that the measured moments are averages reflecting mixtures of a few nearly isoenergetic isomers having different spin states. The magnetism of the complexes mainly comes from Co atoms with a Bz molecule only possessing very small moments. Ferromagnetic ordering is energetically preferred for smaller complexes with n = 1-3 whereas antiferromagnetic ordering is favored for (4, 4). The relatively smaller moments of Con clusters in a Bz matrix indicate that Bz molecules play an attenuation role to the magnetism of the complexes.  相似文献   

19.
Ab initio and Density Functional Theory (DFT) calculations have been carried out for zinc-water clusters Zn(n)-(H2O)(m) (n = 1-32 and m = 1-3, where n and m are the numbers of zinc atoms and water molecules, respectively) to elucidate the structure and electronic states of the clusters and the interaction of zinc cluster with water molecules. The binding energies of H2O to zinc clusters were small at n = 2-3 (2.3-4.2 kcal mol(-1)), whereas the energy increased significantly in n = 4 (9.0 kcal mol(-1)). Also, the binding nature of H2O was changed at n = 4. The cluster size dependency of the binding energy of H2O accorded well with that of the natural population of electrons in the 4p orbital of the zinc atom. In the larger clusters (n > 20), it was found that the zinc atoms in surface regions of the zinc cluster have a positive charge, whereas those in the interior region have a negative charge with the large electron population in the 4p orbital. The interaction of H2O with the zinc clusters were discussed on the basis of the theoretical results.  相似文献   

20.
Neutral and anion clusters of copper, Cu(n) (n=3-11), are examined using real space pseudopotentials constructed within the local spin density approximation. We predict the ground state structure for each cluster, the binding energy, and the corresponding photoelectron spectra, which we compare to experiment. We find strong final state effects in the photoelectron spectra, especially for the smaller clusters. The binding energy as a function of cluster size tracks well with the measured values, although the magnitude of the binding energy exceeds the experimental values by approximately 20%, as expected for the local spin density approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号