首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper addresses the problem of a semi-infinite plane crack along the interface between two isotropic half-spaces. Two methods of solution have been considered in the past: Lazarus and Leblond [1998a. Three-dimensional crack-face weight functions for the semi-infinite interface crack-I: variation of the stress intensity factors due to some small perturbation of the crack front. J. Mech. Phys. Solids 46, 489-511, 1998b. Three-dimensional crack-face weight functions for the semi-infinite interface crack-II: integrodifferential equations on the weight functions and resolution J. Mech. Phys. Solids 46, 513-536] applied the “special” method by Bueckner [1987. Weight functions and fundamental fields for the penny-shaped and the half-plane crack in three space. Int. J. Solids Struct. 23, 57-93] and found the expression of the variation of the stress intensity factors for a wavy crack without solving the complete elasticity problem; their solution is expressed in terms of the physical variables, and it involves five constants whose analytical representation was unknown; on the other hand, the “general” solution to the problem has been recently addressed by Bercial-Velez et al. [2005. High-order asymptotics and perturbation problems for 3D interfacial cracks. J. Mech. Phys. Solids 53, 1128-1162], using a Wiener-Hopf analysis and singular asymptotics near the crack front.The main goal of the present paper is to complete the solution to the problem by providing the connection between the two methods. This is done by constructing an integral representation for Lazarus-Leblond's weight functions and by deriving the closed form representations of Lazarus-Leblond's constants.  相似文献   

2.
A hybrid weight function approach (HWFM) is presented for the fatigue life prediction of infinite body and welded joint structure containing elliptical cracks. A self-containing computer code has been developed for this purpose. Numerical computations were first conducted on cracked infinite body showing a physical fact, that the elliptical shape of the crack becomes circular during its evolution. The prediction of the fatigue crack growth shows that the present results are in perfect concordance with those reported in the literature. Then, numerical tests were carried out on two types of specimens of welded joint structure. The present results were compared to the experimental and predicted ones of other authors, demonstrating that the hybridization method is a powerful numerical technique, and that the SEDF approach (using the Sih’s law) is more valid for the critical cases of welded joints than the SIF approach (using the Paris law). A parametric study has been conducted on the stress ratio “R” showing that the fatigue life to failure decreases with the increase of “R”.  相似文献   

3.
An asymptotic analysis is presented for a dynamic problem of a semi-infinite isotropic thermoelastic solid with a small surface breaking crack. The exterior surface of the solid is subjected to a series of short thermal pulses. The crack surface is traction free and an ideal thermal contact is assumed across the crack. The stress intensity factor is asymptotically evaluated as a function of the crack depth and time. The effect of a boundary layer associated with the diffusive term is identified. The theoretical model is supplied with numerical simulations.  相似文献   

4.
A closed-form solution is obtained for the problem of a mode-III interfacial edge crack between two bonded semi-infinite dissimilar elastic strips. A general out-of-plane displacement potential for the crack interacting with a screw dislocation or a line force is constructed using conformal mapping technique and existing dislocation solutions. Based on this displacement potential, the stress intensity factor (SIF, KIII) and the energy release rate (ERR, GIII) for the interfacial edge crack are obtained explicitly. It is shown that, in the limiting special cases, the obtained results coincide with the results available in the literature. The present solution can be used as the Green’s function to analyze interfacial edge cracks subjected to arbitrary anti-plane loadings. As an example, a formula is derived correcting the beam theory used in evaluation of SIF (KIII) and ERR (GIII) of bimaterials in the double cantilever beam (DCB) test configuration.  相似文献   

5.
Using the complex variable function method and the conformal mapping technique,the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface.Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable.The results can be reduced to the well-known solutio...  相似文献   

6.
Summary A subinterface crack paralleling an interface between two dissimilar piezoelectric solids is considered. When the distance between the interface and the crack is small compared to all other in-plane lengths, the problem can be analyzed as an asymptotic problem for a semi-infinite crack lying at some distance away from the interface. An integral equation for the asymptotic subinterface crack is derived, and a solution of the integral equation for small-generalized Dundurs parameters is obtained. Relations between the intensity factors for the subinterface crack and interface intensity factors of the corresponding interface crack are obtained for a conducting crack as well as for an insulating one.This work was supported by the Brain Korea 21 Project in 2000.  相似文献   

7.
Summary The interface crack problem for a piezoelectric bimaterial based on permeable conditions is studied numerically. To find the singular electromechanical field at the crack tip, an asymptotic solution is derived in connection with the conventional finite element method. For mechanical and electrical loads, the complex stress intensity factor for an interface crack is obtained. The influence of the applied loads on the electromechanical fields near the crack tip is also studied. For a particular case of a short crack with respect to the bimaterial size, the numerical results are compared with the exact analytical solutions, obtained for a piezoelectric bimaterial plane with an interface crack.One author (V.G.) gratefully acknowledges the support provided by the Alexander von Humboldt Foundation of Germany.accepted for publication 7 June 2004  相似文献   

8.
This paper comments on some of the different numerical techniques commonly employed in evaluating Cauchy singular integrals of the first kind; e.g. as pertaining to 2D through cracks in a brittle material undergoing Mode I loading. In addition, a different more direct method is proposed here. Also, two different ways to calculate the stress intensity factor (KI) are contrasted. The accuracy attained by the different methods in calculating KI, and the factors affecting the calculation, are compared. Finally, comments on calculating the stress field of a 2D crack and important considerations are presented.  相似文献   

9.
Asymptotic expansion for the out of plane displacement field around a crack propagating along the gradient in a functionally graded material is developed. The irregular behavior of one of the terms in the expansion at low crack speeds is further examined and a remedial solution, which is well behaved at low crack speeds, is proposed. The developed out of plane displacement field is used to estimate stress intensity factor from quasi-static finite element solution. The results indicate that inclusion of the proposed nonhomogeneity specific terms gives estimates of stress intensity factor, which are consistent with existing analytical predictions.  相似文献   

10.
Based on the investigation performed in Part I of this series, numerical results for the interaction between a semi-infinite interface crack and multiple subinterface matrix microcracks in three kinds of material combinations are given in Part II. The major interaction behaviors are discussed in detail. Special attention is focused on the influences of the different material combinations, the T-stress, the orientation angles, and the location angles of the microcracks on the local stress intensity factor at the interface crack tip. In addition, the variable tendencies of the interaction effect induced from change of the distance between the interface crack tip and the centers of the microcracks are studied. It is concluded that the different material combinations introduced in this paper have little influence on the variable tendencies of the effect, but have significant influence on the effect in magnitude. Detailed comparisons of the results with those in a homogeneous orthotropic material show that the dissimilar materials shift the maximum amplification angle, the maximum shielding angle, the neutral shielding angle, and the neutral T-stress angle, respectively.  相似文献   

11.
The weight function theory for three-dimensional elastic crack analysis received great attention after the work of Rice (1985, 1989). Several applications have been considered since then, particularly in the context of configurational stability, crack path prediction, stress intensity factor expansions, perturbation approaches. In all cases, a specific hypothesis has been made on the variation of crack shape, in order to formulate the problem in terms of Cauchy principal value. In the present note, such hypothesis is further investigated and consequences discussed. A variational statement given in Salvadori and Fantoni (2013a) is thus rephrased in terms of weight functions. Its discrete formulation shows the potential to accurate approximation of crack front propagation.  相似文献   

12.
This work deals with the influence of Kelvin-type viscoelastic interface on the generation of screw dislocations near the interfacial blunt crack tip in light of a pair of concentrated loads. The stress fields for dislocation and concentrated load have been obtained by using the integral transform and conformal mapping, the stress intensity factor have been studied, the image force acting on dislocation has been analyzed. The region rb where n screw dislocations are generated by a pair of concentrated loads and dislocation number are obtained by displacement compatibility and stress compatibility conditions of self-consistent and self-equilibrated systems. The results show that: the force acting on dislocation starts with the value that a perfectly bonded interface, then with relaxation of the imperfect interface; the shield effect for dislocation decreases as time goes by; in addition, with time elapsing, the influence of material shear modulus rate on shielding effect becomes weaker and weaker. The scale of multiplier α(rb/a) increases with relaxation of imperfect interface, the larger ratio of crack geometry c/a and the smaller ratio of shear modulus μ1/μ2 will lead the higher scale of multiplier. When μ1/μ2 = 1, the screw dislocations number first increases and then decreases with relaxation of imperfect interface, In addition, it possesses the highest value at t0 ≈ 1 and tends to vanish at t0 = ∞. When μ1 < μ2, the screw dislocations number increases with relaxation of imperfect interface. When μ1 > μ2, the screw dislocations number first increases then decreases with relaxation of imperfect interface, and possesses the highest value at t0 ≈ 1, the negative value are exclude from the discussion.  相似文献   

13.
The present paper is exposed theoretically to the influence on the dynamic stress intensity factor (DSIF) in the piezoelectric bi-materials model with two symmet- rically permeable interracial cracks near the edges of a circular cavity, subjected to the dynamic incident anti-plane shearing wave (SH-wave). An available theoretical method to dynamic analysis in the related research field is provided. The formulations are based on Green's function method. The DSIFs at the inner and outer tips of the left crack are obtained by solving the boundary value problems with the conjunction and crack- simulation technique. The numerical results are obtained by the FORTRAN language program and plotted to show the influence of the variations of the physical parameters, the structural geometry, and the wave frequencies of incident wave on the dimensionless DSIFs. Comparisons with previous work and between the inner and outer tips are con- cluded.  相似文献   

14.
Summary  The problem of an interfacially cracked three-layered structure constructed of a piezoelectric and two orthotropic materials is analyzed using the theory of linear piezoelectricity and fracture mechanics. Anti-plane shear loading is considered, and the integral transform technique is used to determine the stress intensity factor. Numerical examples show the electro-mechanical effects of various material combinations and layer thicknesses on the stress intensity factor. Interesting results are obtained in comparison with earlier solutions for interfacially cracked piezoelectric structures. Received 29 December 2000; accepted for publication 3 May 2001  相似文献   

15.
Two different types of 8-node cracked quadrilateral finite element are presented for fracture applications. The first element contains a central crack and the other one includes an edge crack. The introduced elements are applicable in 2D problems. The crack is not physically modeled within the element, but instead, its effects on the stiffness matrix are taken into account by utilizing linear fracture mechanics laws. Furthermore, a simple and practical procedure is proposed for calculation of stress intensity factor (SIF) by employing proposed cracked elements. Several numerical examples are presented to evaluate the capabilities of the proposed elements and procedure.  相似文献   

16.
I.IntroductionItiswell'knownthatoneofthemostpowerfultoolsinlinearfieldtheoriesistheGreen'sfunction.Fore1asticity,considerableresearchcanbefoundintheliterature.However,theGreen'sfunctionforpiezoe1ectricityisratherlimitedduetotheanisotropyandelectromechanic…  相似文献   

17.
Stress intensity factors are important in the analysis of cracked materials. They are directly related to the fracture propagation and fatigue crack growth criteria. Based on the analytical solution (Crouch, S.L., 1976. Solution of plane elasticity problems by displacement discontinuity method, Int. J. Numer. Methods Eng. 10, pp. 301–343; Crouch, S.L., Starfield, A.M., 1983. Boundary Element Method in Solid Mechanics, with Application in Rock Mechanics and Geological Mechanics, London, Geore Allon and Unwin, Bonton, Sydney) to the problem of a constant discontinuity in displacement over a finite line segment in the x, y plane of an infinite elastic solid, recently, the crack-tip displacement discontinuity element which can be classified as the left and right crack-tip displacement discontinuity elements are developed by the author Yan, X., (in press. A special crack-tip displacement discontinuity element, Mechanics Research Communications) to model the crack-tip fields to more accurately compute the stress intensity factors of cracks in general plane elasticity. In the boundary element implementation the left or the right crack-tip displacement discontinuity element is placed locally at the corresponding left or right crack tip on top of the ordinary non-singular displacement discontinuity elements that cover the entire crack surface and the other boundaries. To prove further the efficiency of the suggested approach and provide more results of the stress intensity factors, in this study, analysis of an asymmetric branched crack bifurcated from a main crack in plane extension is carried out.  相似文献   

18.
A method improving the evaluation of the stress intensity factor by hybridization of two weight functions is presented and applied to embedded elliptical cracks under various loadings. The hybridization consists in using one or the other function in the zone of the crack where it is the most efficient. The delimitation of the two zones is achieved after optimizing the axes ratio and the curvature radius of the crack. During this optimization we seek to reduce the effects of the singularities present in the weight functions as well as to take better into account the influence of the ellipse curvature. To cite this article: B. El Khalil Hachi et al., C. R. Mecanique 334 (2006).  相似文献   

19.
In this paper, a numerical model developed for the analysis of a cylindrical element of matrix containing a single fiber is presented. A ring-shaped crack is assumed at interface of fiber and matrix. Both layers in the model are bonded perfectly with the exception of the crack faces. Contact elements, which have bonded feature, are used between fiber and matrix. Displacement correlation method is used to calculate opening-mode and sliding-mode stress intensity factors. These results obtained from the analysis help to understand the debonding phenomenon between fiber and matrix interface. Effects of the mechanical properties of fiber and matrix on direction of crack propagation are also discussed.  相似文献   

20.
Based on the extended Stroh formalism, we first derive the extended Green’s functions for an extended dislocation and displacement discontinuity located at the interface of a piezoelectric bi-material. These include Green’s functions of the extended dislocation, displacement discontinuities within a finite interval and the concentrated displacement discontinuities, all on the interface. The Green’s functions are then applied to obtain the integro-differential equation governing the interfacial crack. To eliminate the oscillating singularities associated with the delta function in the Green’s functions, we represent the delta function in terms of the Gaussian distribution function. In so doing, the integro-differential equation is reduced to a standard integral equation for the interfacial crack problem in piezoelectric bi-material with the extended displacement discontinuities being the unknowns. A simple numerical approach is also proposed to solve the integral equation for the displacement discontinuities, along with the asymptotic expressions of the extended intensity factors and J-integral in terms of the discontinuities near the crack tip. In numerical examples, the effect of the Gaussian parameter on the numerical results is discussed, and the influence of different extended loadings on the interfacial crack behaviors is further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号