首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Mesocyclic thioether-aminophosphonite ligands, {-OC10H6(mu-S)C10H6O-}PNC4H8O (2a, 4-(dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin-4-yl)morpholine) and {-OC10H6(mu-S)C10H6O-}PNC4H8NCH3 (2b, 1-(dinaphtho[2,1-d:1',2'-g][1,3,6,2]dioxathiaphosphocin-4-yl)-4-methylpiperazine) are obtained by reacting {-OC10H6(mu-S)C10H6O-}PCl (1) with corresponding nucleophiles. The ligands 2a and 2b react with (PhCN)2PdCl2 or M(COD)Cl2 (M = Pd(II) or Pt(II)) to afford P-coordinated cis-complexes, [{(-OC10H6(mu-S)C10H6O-)PNC4H8X-kappaP}2MCl2] (3a, M = Pd(II), X = O; 3b, M = Pd(II), X = NMe; 4a, M = Pt(II), X = O; 4b, M = Pt(II), X = NMe). Compounds 2a and 2b, upon treatment with [Pd(eta3-C3H5)Cl]2 in the presence of AgOTf, produce the P,S-chelated cationic complexes, [{(-OC10H6(mu-S)C10H6O-)PNC4H8X-kappaP,kappaS}Pd(eta3-C3H5)](CF3SO3) (5a, X = O and 5b, X = NMe). Treatment of 2a and 2b with (PhCN)2PdCl2 in the presence of trace amount of H2O affords P,S-chelated anionic complexes, [{(-OC10H6(mu-S)C10H6O-)P(O)-kappaP,kappaS}PdCl2](H2NC4H8X) (6a, X = O and 6b, X = NMe), via P-N bond cleavage. The crystal structures of compounds 1, 2a, 2b, 4a, and 6a are reported. Compound 6a is a rare example of crystallographically characterized anionic transition metal complex containing a thioether-phosphonate ligand. Most of these palladium complexes proved to be very active catalysts for the Suzuki-Miyaura reaction with excellent turnover number ((TON), up to 9.2 x 10(4) using complex 6a as a catalyst).  相似文献   

2.
Transition metal complexes of bis(2-diphenylphosphinoxynaphthalen-1-yl)methane (1) are described. Bis(phosphinite) 1 reacts with Group 6 metal carbonyls, [Rh(CO)2Cl]2, anhydrous NiCl2, [Pd(C3H5)Cl]2/AgBF4 and Pt(COD)I2 to give the corresponding 10-membered chelate complexes 2, 3 and 5-8. Reaction of 1 with [Rh(COD)Cl]2 in the presence of AgBF4 affords a cationic complex, [Rh(COD){Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}]BF4 (4). Treatment of 1 with AuCl(SMe2) gives mononuclear chelate complex, [(AuCl){Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}] (9) as well as a binuclear complex, [Au(Cl){mu-Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}AuCl] (10) with ligand 1 exhibiting both chelating and bridged bidentate modes of coordination respectively. The molecular structures of 2, 6, 7, 9 and 10 are determined by X-ray studies. The mixture of Pd(OAc)2 and effectively catalyzes Suzuki cross-coupling reactions of a range of aryl halides with aryl boronic acid in MeOH at room temperature or at 60 degrees C, giving generally high yields even under low catalytic loads. The cationic rhodium(I) complex, [Rh(COD){Ph2P(-OC10H6)(mu-CH2)(C10H6O-)PPh2-kappaP,kappaP}]BF4 (4) catalyzes the hydrogenation of styrenes to afford the corresponding alkyl benzenes in THF at room temperature or at 70 degrees C with excellent turnover frequencies.  相似文献   

3.
The thioether-functionalized metalloligand ferrocenyl-bis(phosphonite), Fe(C5H4PR)2 (4, R=-OC10H6(micro-S)C10H6O-) is synthesized in three steps starting from ferrocene, and its coordination behavior toward various transition-metal derivatives is described. The reactions of 4 with [Rh(CO)2Cl]2 or M(COD)Cl2 afforded the chelate complexes, cis-[Rh(CO)Cl{Fe(C5H4PR)2-kappaP,kappaP}] (5) or cis-[MCl2{Fe(C5H4PR)2-kappaP,kappaP}] (6, M=PdII; 7, M=PtII), respectively. However, treatment of 4 with CuX (X=Cl, Br, and I) produces binuclear complexes, [Cu2(micro-X)2(MeCN){Fe(C5H4PR)2-kappaP,kappaP}] (8, X=Cl; 9, X=Br; 10, X=I) where the sulfur atom on one side of the ligand is involved in a weak interaction with the copper center. Reaction of 4 with 1 equiv of Ag(PPh3)OTf gives the mononuclear chelate complex [Ag(OTf)PPh3{Fe(C5H4PR)2-kappaP,kappaP}] (11), whereas treatment with 2 equiv of AuCl(SMe2) produces the dinuclear gold complex [Au(Cl){Fe(C5H4PR)2-kappaP,kappaP}Au(Cl)] (12). The crystal structures of 10 and 12 are reported, where a strong metallophilic interaction is observed between the closed-shell metal centers. The palladium complex 6 catalyzes the Suzuki cross-coupling reactions of aryl bromides with phenylboronic acid with excellent turnover numbers (TON up to 1.36x10(5)).  相似文献   

4.
The large-bite bis(phosphite) ligand [{(-OC(10)H(6)(mu-S)C(10)H(6)O-)P{mu-(-OC(10)H(6)(mu-S)C(10)H(6)O-)}P(-OC(10)H(6)(mu-S)C(10)H(6)O-)}] (Pinsertion markP) () was obtained by the reaction of PCl(3) and thiobis(2,2'-naphthol) (). The stoichiometric reactions of with elemental sulfur and selenium afforded the corresponding chalcogenide derivatives [(E)Pinsertion markP(E)] (, E = S; , E = Se) in good yield. Treatment of two equivalents of [ClAu(SMe(2))] with afforded a dinuclear complex [ClAu(Pinsertion markP)AuCl] (), whereas the 1 : 1 reaction with CuI yielded the [(Pinsertion markP)CuI] () complex. The copper(i) complex on treatment with various pyridyl derivatives, produced mixed-ligand complexes [(Pinsertion markP)CuI(NC(5)H(5))] (), [(Pinsertion markP)Cu(2,2'-bpy)]I (), [(Pinsertion markP)Cu(1,10-phen)]I () and {[(Pinsertion markP)Cu(4,4'-bpy)]I}(infinity) (). The compounds were tested for their cytotoxic activity on the human cervical cancer (HeLa) cell line. Compounds and were found to inhibit proliferation of HeLa cells significantly. These agents also induced apoptotic cell death in cancer cells. Evidence presented in this study indicated that the compounds and activate the tumor suppressor protein p53 in the colon adenocarcinoma (HCT-116) cell line.  相似文献   

5.
Preparations of novel unsymmetrical, tridentate nitrogen ligand precursors, PhN=C(CMe2)(NPh)C=N(CH2)2NMe2(1) and PhN=C(CMe2)(NPh)C=N(CH2)Py (2), are described. Treatment of 1 with 1 molar equiv. (COD)PdCl2 in the presence of NEt3 or with 1 molar equiv. Pd(OAc)2 affords orthometallated palladium(II) complexes, [PhN=C(CMe2)(N-eta1-Ph)C=N(CH2)2NMe2]PdX (X=Cl (3); X=OAc (4)), respectively. Compound can be yielded via the reaction of with an excess of LiCl in methanol. Treatment of with 1 molar equiv. of (COD)PdCl2, Pd(OAc)2 or Pd(TFA)2 affords orthometallated palladium(II) complexes, [PhN=C(CMe2)(N-eta1-Ph)C=NCH2Py]PdX (X=Cl (5); X=OAc (6); X=TFA (7)), respectively. The crystal and molecular structures are reported for compounds 2, 3, 5 and 6. The application of these novel palladacyclic complexes to the Heck reaction with aryl halide substrates was examined.  相似文献   

6.
The heterocycles 2-methyl-2-oxazoline (mox) and 2-methyl-2-thiazoline (mth) react with Ph2PCl under mild conditions, in the presence of NEt3 which promotes their phosphorylation by stabilization of their enamino tautomers mox(e) and mth(e), respectively, and which also behaves as HCl scavenger. Depending on the reaction conditions, three different phosphine ligands were obtained in good yields from mox: the monophosphine Ph2PCH2C=NCH2CH2O (1ox) and the isomeric diphosphines Ph2PCH=COCH2CH2NPPh2 (2ox) (X-ray structure) and (Ph2P)2CHC=NCH2CH2O (3ox). The formation of these ligands involves phosphoryl migration reactions, which were studied by NMR spectroscopy. The synthesis and the X-ray structures of the corresponding diphenylphosphinothiazolines Ph2PCH2C=NCH2CH2S (1th) and Ph2CH=CSCH2CH2NPPh2 (2th) are also reported but the thiazoline analog of the geminal diphosphine 3ox was not observed. The metal complexes [Pt(3ox-H)2] x 4 CH2Cl2 (4 x 4 CH2Cl2), [Pt(Me)I(1ox)] (5), [Pt(Me)2(1ox)] (7), [Pd(dmba-C,N)(1th)]OTf x 0.25 Et2O (8 x 0.25 Et2O), [Pd(dmba-C,N)(1th-H)] (9), and [9 x {Pd(dmba-C,N)Cl}] x 2.5 C6H6 (10 x 2.5 C6H6) have been prepared and structurally characterized by X-ray diffraction.  相似文献   

7.
The stable primary phosphine complexes trans-M(PH(2)Mes)(2)Cl(2) (1, M = Pd; 2, M = Pt; Mes = 2,4,6-(t-Bu)(3)C(6)H(2)) were prepared from Pd(PhCN)(2)Cl(2) and K(2)PtCl(4), respectively. Reaction of Pt(COD)Cl(2) (COD = 1,5-cyclooctadiene) with less bulky arylphosphines gives the unstable cis-Pt(PH(2)Ar)(2)Cl(2) (3, Ar = Is = 2,4,6-(i-Pr)(3)C(6)H(2); 4, Ar = Mes = 2,4,6-Me(3)C(6)H(2)). Spontaneous dehydrochlorination of 4 or direct reaction of K(2)PtCl(4) with 2 equiv of PH(2)Mes gives the insoluble primary phosphido-bridged dimer [Pt(PH(2)Mes)(&mgr;-PHMes)Cl](2) (5), which was characterized spectroscopically, including solid-state (31)P NMR studies. The reversible reaction of 5 with PH(2)Mes gives [Pt(PH(2)Mes)(2)(&mgr;-PHMes)](2)[Cl](2) (6), while PEt(3) yields [Pt(PEt(3))(2)(&mgr;-PHMes)](2)[Cl](2) (7), which on recrystallization forms [Pt(PEt(3))(&mgr;-PHMes)Cl](2) (8). Complex 5 and PPh(3) afford [Pt(PPh(3))(&mgr;-PHMes)Cl](2) (9). Addition of 1,2-bis(diphenylphosphino)ethane (dppe) to 5 gives the dicationic [Pt(dppe)(&mgr;-PHMes)](2)[Cl](2) (10-Cl), which was also obtained as the tetrafluoroborate salt 10-BF(4)() by deprotonation of [Pt(dppe)(PH(2)Mes)Cl][BF(4)] (11) with Et(3)N or by reaction of [Pt(dppe)(&mgr;-OH)](2)[BF(4)](2) with 2 equiv of PH(2)Mes. Complexes 8, 9, and 10-Cl.2CH(2)Cl(2).2H(2)O were characterized crystallographically.  相似文献   

8.
The aminobis(phosphonite) PhN(P(OC6H4OMe-o)2)2 (PNP; 1) reacts with 2 equiv of CuI to give a binuclear complex, Cu2(mu2-I)2(NCCH3)2(mu-PNP) (2), whereas similar reactions with CuCl and CuBr furnish tetranuclear "ladder"-type complexes, Cu4(mu2-X)2(mu3-X)2(mu-PNP)2 (3, X = Cl; 4, X = Br), in excellent yield. The complex 2 when heated under vacuum turns into the tetranuclear complex 5 in a reversible fashion. Similarly, the complexes 3 and 4 on dissolution in CH3CN dissociate reversibly into the corresponding binuclear complexes from which the tetrameric complexes can be readily regenerated. Treatment of 2 with excess of pyridine produces the heterosubstituted derivative, Cu2(mu2-I)2(C5H5N)2(mu-PNP) (6). The interaction of 2 with 2,2'-bipyridine in 1:1 and 1:2 ratios produces the mono- and disubstituted derivatives, Cu2(mu2-I)I(C10H8N2)(mu-PNP) (7) and [Cu2(mu2-I)(C10H8N2)2(mu-PNP)]I (8), respectively. The chloro and bromo analogues of 7 are prepared by treating the tetranuclear derivatives 3 and 4 with 2,2'-bipyridine. Reaction of 2 with 4,4'-bipyridine in the presence of AgOTf gives the cationic complex [Cu4(NCCH3)4(C10H8N2)2(mu-PNP)2](OTf)4 (9), whereas the complex [Cu2(NCCH3)2(mu-PNP)2](OTf)2 (10) was obtained from the reaction of 2 with 1 equiv of 1 and AgOTf. The reactions of 3 and 4 with 2 equiv of 4,4'-bipyridine in acetonitrile afford one-dimensional copper(I) coordination polymers [Cu2(mu2-X)2(mu-PNP)(C10H8N2)]n (13, X = Cl; 14, X = Br). The molecular structures of 2-4, 6-8, 12, and 14 are confirmed by X-ray crystallography.  相似文献   

9.
[(Ru(eta(6)-p-cymene)(mu-Cl)Cl)(2)] and [(Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl)(2)] react with Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2) (R = Et (1a), Ph (1b)) affording complexes [Ru(eta(6)-p-cymene)Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (2a), Ph (2b)) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (6a), Ph (6b)). While treatment of 2a with 1 equiv of AgSbF(6) yields a mixture of [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (3a) and [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,N-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (4a), [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OPh)(2)]Ph(2))][SbF(6)] (3b) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)] (R = Et (7a), Ph (7b)) are selectively formed from 2b and 6a,b. Complexes [Ru(eta(6)-p-cymene)(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (5a), Ph (5b)) and [Ru(eta(3):eta(3)-C(10)H(16))(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (8a), Ph (8b)) have been prepared using 2 equiv of AgSbF(6). The reactivity of 3-5a,b has been explored allowing the synthesis of [Ru(eta(6)-p-cymene)X(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et, Ph; X = Br, I, N(3), NCO (9-12a,b)). The catalytic activity of 2-8a,b in transfer hydrogenation of cyclohexanone, as well as theoretical calculations on the models [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,N-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+ and [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,O-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+, has been also studied.  相似文献   

10.
Adams RD  Miao S 《Inorganic chemistry》2004,43(26):8414-8426
The reaction of CpMoMn(mu-S(2))(CO)(5), 1, with 1,4-benzoquinone in the presence of irradiation with visible light yielded the quinonedithiolato complex CpMoMn(CO)(5)(mu-S(2)C(6)H(2)O(2)), 2. The new complex CpMoMn(CO)(5)(mu-S(2)C(6)Cl(2)O(2)) (4) was synthesized similarly from 1 and 2,3-dichloro-1,4-benzoquinone. Compounds 2 and 4 were reduced with hydrogen to yield the hydroquinone complexes CpMoMn(CO)(5)[mu-S(2)C(6)H(2)(OH)(2)], 3, and CpMoMn(CO)(5)[mu-S(2)C(6)Cl(2)(OH)(2)], 5. UV-vis irradiation of solutions of Fe(2)(CO)(6)(mu-S(2)) and 1,4-benzoquinone yielded the hydroquinone complex Fe(2)(CO)(6)[mu-S(2)C(6)H(2)(OH)(2)], 6. Compound 6 was oxidized to the quinone complex Fe(2)(CO)(6)(mu-S(2)C(6)H(2)O(2)), 7, by using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Substitution of the CO ligands on 6 by PPh(3) yielded the derivatives Fe(2)(CO)(5)(PPh(3))[mu-S(2)C(6)H(2)(OH)(2)], 8, and Fe(2)(CO)(4)(PPh(3))(2)[mu-S(2)C(6)H(2)(OH)(2)], 9. The electrochemical properties of 3, 5, 6, 8, and 9 were measured by cyclic voltammetry. The molecular structure of each of the new compounds 2-9 was established by single-crystal X-ray diffraction analyses.  相似文献   

11.
The reaction of p-phenylenediamine with excess PCl 3 in the presence of pyridine affords p-C 6H 4[N(PCl 2) 2] 2 ( 1) in good yield. Fluorination of 1 with SbF 3 produces p-C 6H 4[N(PF 2) 2] 2 ( 2). The aminotetra(phosphonites) p-C 6H 4[N{P(OC 6H 4OMe- o) 2} 2] 2 ( 3) and p-C 6H 4[N{P(OMe) 2} 2] 2 ( 4) have been prepared by reacting 1 with appropriate amount of 2-(methoxy)phenol or methanol, respectively, in the presence of triethylamine. The reactions of 3 and 4 with H 2O 2, elemental sulfur, or selenium afforded the tetrachalcogenides, p-C 6H 4[N{P(O)(OC 6H 4OMe- o) 2} 2] 2 ( 5), p-C 6H 4[N{P(S)(OMe) 2} 2] 2 ( 6), and p-C 6H 4[N{P(Se)(OMe) 2} 2] 2 ( 7) in good yield. Reactions of 3 with [M(COD)Cl 2] (M = Pd or Pt) (COD = cycloocta-1,5-diene) resulted in the formation of the chelate complexes, [M 2Cl 4- p-C 6H 4{N{P(OC 6H 4OMe- o) 2} 2} 2] ( 8, M = Pd and 9, M = Pt). The reactions of 3 with 4 equiv of CuX (X = Br and I) produce the tetranuclear complexes, [Cu 4(mu 2-X) 4(NCCH 3) 4- p-C 6H 4{N(P(OC 6H 4OMe- o) 2) 2} 2] ( 10, X = Br; 11, X = I). The molecular structures of 1- 3, 6, 7, and 9- 11 are confirmed by single-crystal X-ray diffraction studies. The weak intermolecular P...P interactions observed in 1 leads to the formation of a 2D sheetlike structure, which is also examined by DFT calculations. The catalytic activity of the Pd(II) 8 has been investigated in Suzuki-Miyaura cross-coupling reactions.  相似文献   

12.
Reactions of [PdCl2(COD)] with 1 equiv. of the iminophosphorane-phosphine ligands Ph2PCH2P{=NP(=O)(OR)2}Ph2 (R=Et, Ph) lead to the novel Pd(II) derivatives cis-[PdCl2(kappa2-(P,N)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)] (R=Et, Ph). Pd-N bond cleavage readily takes place upon treatment of these species with a variety of two-electron donor ligands. By this way, complexes cis-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)(L)] (R=Et, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3; R=Ph, L=CNtBu, CN-2,6-C6H3Me2, py, P(OMe)3, P(OEt)3) have been synthesized in high yields. The addition of two equivalents of ligands to dichloromethane solutions of [PdCl2(COD)] results in the formation of complexes trans-[PdCl2(kappa1-(P)-Ph2PCH2P{=NP(=O)(OR)2}Ph2)2] (R=Et, Ph), which can be converted into the dicationic species [Pd(Ph2PCH2P{=NP(=O)(OR)2}Ph2)2][SbF6]2 (R=Et, Ph) by treatment with AgSbF6. Complex also reacts with CNtBu to afford trans-[Pd(kappa1(P)-Ph2PCH2P{=NP(=O)(OPh)2}Ph2)2(CNtBu)2][SbF6]2. The structures of and have been determined by single-crystal X-ray diffraction methods. In addition, the ability of these Pd(II) complexes to promote the catalytic cycloisomerization of (Z)-3-methylpent-2-en-4-yn-1-ol into 2,3-dimethylfuran has also been studied.  相似文献   

13.
Novel dicyanido-bridged dicationic RuIIISSRuIII complexes [{Ru(P(OCH3)3)2}2(mu-S2)(mu-X)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (4, X=Cl, Br) were synthesized by the abstraction of the two terminal halide ions of [{RuX(P(OCH3)3)2}2(mu-S2)(mu-X)2] (1, X=Cl, Br) followed by treatment with m-xylylenedicyanide. 4 reacted with 2,3-dimethylbutadiene to give the C4S2 ring-bridged complex [{Ru(P(OCH3)3)2}2{mu-SCH2C(CH3)=C(CH3)CH2S}(mu-X)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (6, X=Cl, Br). In addition, 4 reacted with 1-alkenes in CH3OH to give alkenyl disulfide complexes [{Ru(P(OCH3)3)2}2{mu-SS(CH2C=CHR)}(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3) (7: R=CH2CH3, 9: R=CH2CH2CH3) and alkenyl methyl disulfide complexes [{Ru(P(OCH3)3)2}2{mu-S(CH3)S(CH2C=HR)}(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (8: R=CH2CH3, 10: R=CH2CH2CH3) via the activation of an allylic C-H bond followed by the elimination of H+ or condensation with CH3OH. Additionally, the reaction of 4 with 3-penten-1-ol gave [{Ru(P(OCH3)3)2}2{mu-SS(CH2C=CHCH2OH)}(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3) (11) via the elimination of H+ and [{Ru(P(OCH3)3)2}2(mu-SCH2CH=CHCH2S)(mu-Cl)2{mu-m-C6H4(CH2CN)2}](CF3SO3)2 (12) via the intramolecular elimination of a H2O molecule. 12 was exclusively obtained from the reaction of 4 with 4-bromo-1-butene.  相似文献   

14.
The hydrolysis of sterically hindered and unhindered alkyl nitriles, and also of benzyl and phenyl nitriles RCN (R = Me, CH(2)Cl, Et, n-Pr, i-Pr, n-Bu, t-Bu, p-MeOC(6)H(4)CH(2), Ph), to carboxamides is catalyzed by a novel system of superior simplicity consisting of cheap, widely commercially available, and rather environmentally friendly compounds, that is, a ZnX(2)/ketoxime combination, but it does not proceed at all with either the zinc salt or the ketoxime taken alone. The nature of the anion X(-) in the zinc salt (X = NO(3), Cl, CF(3)SO(3)) or of the ketoxime (Me(2)C=NOH, C(4)H(8)C=NOH, C(5)H(10)C=NOH) does not affect strongly the catalytic properties of the system, but the best results were obtained so far with a Zn(NO(3))(2).6H(2)O/2-propanone oxime molar ratio of 1:4; turnover numbers are typically above ca. 100 but reach as high as 1000 for p-MeOC(6)H(4)CH(2)C(=O)NH(2). The previously unknown structures of the two carboxamide products n-BuC(=O)NH(2) and p-MeOC(6)H(4)CH(2)C(=O)NH(2) were determined by X-ray diffraction studies. The complexes [ZnX(2)(R(2)C=NOH)(2)] (X = Cl, R(2) = 2Me, C(4)H(8), C(5)H(10); X = NO(3), R = C(4)H(8)), prepared by heating the appropriate zinc salts with 2 equiv of the ketoxime in acetone and characterized by C, H, N analyses, FAB-MS, (1)H and (13)C[(1)H] NMR spectroscopies, and also X-ray crystallography (for X = Cl, R(2) = 2Me; X = NO(3), R = C(4)H(8)), proved to be catalyst precursors in the conversions because the activity of these species is high only in the presence of 2 equiv of the ketoxime.  相似文献   

15.
1 INTRODUCTION The design of heterometallic complexes of photoluminescnece is of current interest for the inorganic chemists[1, 2]. The coordination flexibility of -dppm ligand as well as the easy substitution of weakly coordinated solvate donors by stronger donors makes the binuclear compound [M2(m- dppm)2(sol)2]2+ excellent building block for con- structing various molecular materials with desired properties[3~5]. We are devoted to developing heterometallic photoluminescent transitio…  相似文献   

16.
The reaction between Na, t BuPCl 2 , and PCl 3 in thf gives Na[ cyclo -( t Bu 4 P 5 )] ( 1 ). 1 reacts with PCl 3 to yield ( cyclo - t Bu 3 P 4 ) t BuPCl ( 2 ), and with a proton source, such as HCl, NH 4 Cl, or t BuCl, to give cyclo - t Bu 4 P 5 H ( 3 ). The reaction of 1 with [MCl 2 (PRR' 2 ) 2 ] (M = Ni; R = R' = Et; M = Pd, Pt, R = Ph, R' = Me) gives [Ni{ cyclo -( t Bu 3 P 5 )}(PEt 3 ) 2 ] ( 4 ), [Pd{ cyclo -( t Bu 4 P 5 )} 2 ] ( 5 ), and [PtCl{ cyclo -( t Bu 3 P 4 ) t BuP}(PPhMe 2 )] ( 6 ). 1-6 were characterized by 31 P{ 1 H} NMR spectroscopy, and 1 and 4-6 were also characterized by X-ray crystallography.  相似文献   

17.
Wei ZH  Li HX  Zhang WH  Ren ZG  Zhang Y  Lang JP  Abrahams BF 《Inorganic chemistry》2008,47(22):10461-10468
Treatment of [Et 4N] 2[(edt) 2Mo 2S 2(mu-S) 2] ( 1) (edt = ethanedithiolate) with equimolar CuBr afforded an anionic hexanuclear cluster [Et 4N] 2[(edt) 2Mo 2(mu-S) 3(mu 3-S)Cu] 2.2CH 2Cl 2 ( 2.2CH 2Cl 2). On the other hand, reactions of 1 with 2 equiv of CuBr in the presence of 1,2-bis(diphenylphosphino)methane (dppm) and pyridine (Py) ligands gave rise to two neutral tetranuclear clusters [(edt) 2Mo 2O 2(mu-S) 2Cu 2(dppm) 2] ( 3) and [(edt) 2Mo 2O(mu 3-S)(mu-S) 2Cu 2(Py) 4] ( 4), respectively. The reaction of 1 with 2 equiv of CuBr followed by the addition of a mixture of dppm and Py (molar ratio = 1:2) yielded another neutral tetranuclear cluster [(edt) 2Mo 2(mu-S) 2(mu 3-S) 2Cu 2(dppm)(Py)].Py ( 5.Py). Compounds 2- 5 have been characterized by elemental analysis, UV-vis spectra, IR spectra, (1)H NMR, and X-ray analysis. The structure of the dianion of 2 can be viewed as having a [Mo 4S 8Cu 2] core in which two chemically equivalent [Mo 2(mu-S) 3(mu 3-S)(edt) 2Cu] (-) anions are linked by two extra Cu-S edt bonds. The molecular structure of 3 may be visualized as being built of one [(edt) 2Mo 2X 2(mu-S) 2] (2-) dianion and one [Cu 2(dppm) 2] (2+) dication that are connected by a pair of M-mu-S edt bonds. Compound 4 is formed by the affiliation of two Cu(I) atoms only at one end of the [(edt) 2Mo 2S 2(mu-S) 2] moiety, connecting with the S t atoms and the S edt atom. Cluster 5.Py can be viewed as being constructed from the addition of one Cu atom onto the incomplete cubanelike [Mo 2S 4Cu] framework through one terminal sulfur and one edt sulfur. Among the four clusters, 3 and 4 have internal mirror symmetry or pseudo mirror symmetry, respectively, while 2 and 5 are asymmetric clusters with racemic formation.  相似文献   

18.
Reactivity studies of oxo-Mo(IV) complexes, Tp(iPr)MoO{2-OC(6)H(4)C(O)R-κ(2)O,O'} (R = Me, Et, OMe, OEt, OPh, NHPh), containing chelated hydrogen-bond donor/acceptor phenolate ligands are reported. Hydrolysis/oxidation of Tp(iPr)MoO(2-OC(6)H(4)CO(2)Ph-κ(2)O,O') in the presence of methanol yields tetranuclear [Tp(iPr)MoO(μ-O)(2)MoO](2)(μ-OMe)(2) (1), while condensation of Tp(iPr)MoO{2-OC(6)H(4)C(O)Me-κ(2)O,O'} and methylamine gives the chelated iminophenolate complex, Tp(iPr)MoO{2-OC(6)H(4)C(Me)NMe-κ(2)O,N} (2), rather than the aqua complex, Tp(iPr)MoO{2-OC(6)H(4)C(Me)NMe-κO}(OH(2)). The oxo-Mo(IV) complexes are readily oxidized by dioxygen or hydrogen peroxide to the corresponding cis-dioxo-Mo(VI) complexes, Tp(iPr)MoO(2){2-OC(6)H(4)C(O)R}; in addition, suitable one-electron oxidants, e.g., [FeCp(2)]BF(4) and [N(C(6)H(4)Br)(3)][SbCl(6)], oxidize the complexes to their EPR-active (g(iso) ≈ 1.942) molybdenyl counterparts (3, 4). Molybdenyl complexes such as Tp(iPr)MoOCl{2-OC(6)H(4)C(O)R} (5) and Tp(iPr)MoOCl(2) also form when the complexes react with chlorinated solvents. The ester derivatives (R = OMe, OEt, OPh) react with propylene sulfide to form cis-oxosulfido-Mo(VI) complexes, Tp(iPr)MoOS{2-OC(6)H(4)C(O)R}, that crystallize as dimeric μ-disulfido-Mo(V) species, [Tp(iPr)MoO{2-OC(6)H(4)C(O)R}](2)(μ-S(2)) (6-8). The crystal structures of [Tp(iPr)MoO(μ-O)(2)MoO](2)(μ-OMe)(2), Tp(iPr)MoO{2-OC(6)H(4)C(Me)NMe}, Tp(iPr)MoOCl{2-OC(6)H(4)C(O)NHPh}·{2-HOC(6)H(4)C(O)NHPh}, and [Tp(iPr)MoO{2-OC(6)H(4)C(O)R}](2)(μ-S(2)) (R = OMe, OEt) are reported.  相似文献   

19.
The reaction of 2-acetylthiophene thiosemicarbazone (2-HATT) and 2-acetylthiophene 4-phenylthiosemicarbazone (2-HAT-4-FT) with Pd(COD)Cl(2) (COD = 1,5-cyclooctadiene) and trans-Pt(2)PEt(3)Cl(4) yielded four new metal complexes: [Pd(2-HATT)Cl(2)] (1), [Pd(2-ATT)(2)] (2), [Pd(2-AT-4-FT)Cl] (3) and [Pt(2-ATT)(PEt(3))Cl] (4). Apart from compound 3 all the others were characterised by (1)H and (13)C{(1)H} NMR, infrared spectroscopy, and elemental analysis. Multinuclear NMR experiments of (31)P{(1)H} and (195)Pt{(1)H} of complex 4 have revealed that the ligand 2-HATT behaves as a bidentate chelating agent towards Pd(COD)Cl(2) and trans-Pt(2)PEt(3)Cl(4) whereas ligand 2-HAT-4-FT forms a tridentate chelating complex with Pd(COD)Cl(2).  相似文献   

20.
A series of sulfido-bridged tungsten-ruthenium dinuclear complexes Cp*W(mu-S)(3)RuX(PPh(3))(2) (4a; X = Cl, 4b; X = H), Cp*W(O)(mu-S)(2)RuX(PPh(3))(2) (5a; X = Cl, 5b; X = H), and Cp*W(NPh)(mu-S)(2)RuX(PPh(3))(2) (6a; X = Cl, 6b; X = H) have been synthesized by the reactions of (PPh(4))[Cp*W(S)(3)] (1), (PPh(4))[Cp*W(O)(S)(2)] (2), and (PPh(4))[Cp*W(NPh)(S)(2)] (3), with RuClX(PPh(3))(3) (X = Cl, H). The heterolytic cleavage of H(2) was found to proceed at room temperature upon treating 5a and 6a with NaBAr(F)(4) (Ar(F) = 3, 5-C(6)H(3)(CF(3))(2)) under atmospheric pressure of H(2), which gave rise to [Cp*W(OH)(mu-S)(2)RuH(PPh(3))(2)](BAr(F)(4)) (7a) and [Cp*W(NHPh)(mu-S)(2)RuH(PPh(3))(2)](BAr(F)(4)) (8), respectively. When Cp*W(O)(mu-S)(2)Ru(PPh(3))(2)H (5b) was treated with a Br?nstead acid, [H(OEt(2))(2)](BAr(F)(4)) or HOTf, protonation occurred exclusively at the terminal oxide to give [Cp*W(OH)(mu-S)(2)RuH(PPh(3))(2)](X) (7a; X = BAr(F)(4), 7b; X = OTf), while the hydride remained intact. The analogous reaction of Cp+W(mu-S)(3)Ru(PPh(3))(2)H (4b) led to immediate evolution of H(2). Selective deprotonation of the hydroxyl group of 7a or 7b was induced by NEt(3) and 4b, generating Cp*W(O)(mu-S)(2)Ru(PPh(3))(2)H (5b). Evolution of H(2) was also observed for the reactions of 7a or 7b with CH(3)CN to give [Cp*W(O)(mu-S)(2)Ru(CH(3)CN)(PPh(3))(2)](X) (11a; X = BAr(F)(4), 11b; X = OTf). We examined the H/D exchange reactions of 4b, 5b, and 7a with D(2) and CH(3)OD, and found that facile H/D scrambling over the W-OH and Ru-H sites occurred for 7a. Based on these experimental results, the mechanism of the heterolytic H(2) activation and the reverse H(2) evolution reactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号