首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The properties of a negative transient signal (negative peak) observed during the first seconds of the induction of the photoacoustic (PA) signal in dark-adapted barley leaves treated with methyl viologen (MV) and diuron and then exposed to high temperatures have been examined. Under those conditions no electron donation from photosystem II (PSII) occurred, and electron flow through PSI could be supported only by soluble reductants located in the chloroplast stroma. The negative peak was observed only if the PA signal had been monitored at low, and not high, frequencies. The peak obviously originated from the oxygen consumption by PSI. The size of the peak increased as the temperature of preheating was raised from 39 to 45 degrees C. The size of the peak decreased exponentially with a half-time of 3.7 s during illumination under low light. This decrease was found to be much faster under strong light. The recovery of the peak during dark acclimation required several minutes. It is concluded that the negative peak reflects the oxygen consumption supported by stromal reductants, their pool being rapidly exhausted under light in the presence of MV. The maximal size of the pool was calculated as 140 eq: P700 in dark-adapated leaves.  相似文献   

2.
Abstract— The presence of light during exposure of intact pea leaves to high temperature (40°C) protects Photosystem II (PSII) against inactivation, as indicated by the preservation of the maximal variable 685 nm chlorophyll fluorescence and the photosynthetic oxygen evolution. This photoprotection was observed (i) to be saturated at low fluence rates ( ca 10 W m-2) and (ii) to be strongly dependent on the spectral characteristics of the light. It was specifically induced by red light (630–670 nm) whereas other wavelengths were much less protective. A strong antagonism between red and far-red lights was also observed, with PSII stabilization by red light being partially cancelled by additional far-red light.  相似文献   

3.
Abstract— Intact leaves of Commelina communis irradiated with high fluence rates of red light, showed discrete increases in stomatal conductance in response to pulses (1-100 s) of blue light (250 μmol m?2 s?1). Red light pulses were ineffective, indicating that the conductance increases were not mediated by photosynthesis and that they constitute a specific stomatal response to blue light. The response peaked 15 min after the pulse and was completed within50–60 min. Conductance increases were proportional to pulse duration up to about 30 s and saturated at longer exposures. The relationship between stomatal responses and pulse duration approximately fitted an exponential function, with a t 9s. Pulse responses at two different fluences indicated that reciprocity held. Responses to two consecutive pulses varied with time between pulses. A saturating pulse applied immediately after a preceding one induced no additional response; two saturating pulses 50 min apart caused two identical, consecutive responses. Total increases in conductance induced by two pulses separated by intermediate time intervals increased with time between pulses with a = 9 min. These results point to a blue light-dependent photoconversion of a molecular form, with the activity of the photoconversion product decaying in a thermal reaction. Under continuous blue light, prevailing fluence rates and rates of the light and thermal reactions are postulated to determine steady-state activities of the photoconversion product and proportional increases in conductance levels. These findings have implications for the environmental and metabolic roles of the stomatal response to blue light.  相似文献   

4.
Cells of characean algae exposed to illumination arrange plasma-membrane H(+) fluxes and photosynthesis in coordinated spatial patterns (bands). This study reveals that H(+) transport and photosynthesis patterns in these excitable cells are affected not only by light conditions but also by electric excitation of the plasma membrane. It is shown that generation of action potential (AP) temporally eliminates alkaline bands, suppresses O(2) evolution, and differentially affects primary reactions of photosystem II (PSII) in different cell regions. The quantum yield of PSII electron transport decreased after AP in the alkaline but not in acidic cell regions. The effects of electric excitation on fluorescence and the PSII electron flow were most pronounced at light-limiting conditions. Evidence was obtained that the shift in chlorophyll fluorescence after AP is due to the increase in DeltapH at thylakoid membranes. It is concluded that the AP-triggered pathways affecting ion transport and photosynthetic energy conversion are linked but not identical.  相似文献   

5.
Abstract— The duration of the far-red light-absorbing form of phytochrome (Pfr) of the photoreceptor pool involved in the control of seed germination was investigated for Datura ferox seeds. These seeds require both Pfr and alternating temperatures (20/30°C) to germinate. After 24 h imbibition (25°C), the seeds received pretreatment-light pulses providing different phytochrome photoequilibria (Pfr/P), followed by a 24 h dark incubation (25°C), and test-light pulses providing different Pfr/P immediately prior to transfer to alternating temperatures. Germination increased with increasing Pfr/P provided by the test-light pulses, but was unaffected by the pretreatment-light pulses. This suggests that phytochrome synthesis, phytochrome degradation and phytochrome-mediated changes in response to phytochrome were negligible. In other experiments, red light-pretreatment pulses were followed by dark incubations (25°C) of different duration before transfer to alternating temperatures. The proportion of Pfr remaining after the 25°C incubation period was estimated by comparing germination rates with those of seeds that received test-light pulses of known calculated Pfr/P immediately prior to the start of the cycles of alternating temperatures. More than 80% of the Pfr established by a Pfr/P= 0.87 light pulse was present and active even after 48 h dark incubation at 25°C. Surprisingly, when a pretreatmentlight pulse providing a Pfr/P= 0.70 was given, the reduction in [Pfr] was significantly faster.
Germination of Datura ferox seeds is under the control of a highly stable (type II like) phytochrome pool. Apparently, this pool follows Pfr dark reversion to the red light-absorbing form, the times to reach half the original Pfr pool being > 96 h or <14 h after light pulses providing Pfr/P= 0.87 or 0.70, respectively.  相似文献   

6.
Photosystem II (PSII) complex activity is known to decrease under strong white light illumination, and this photoinhibition phenomenon is connected to the photobleaching of the PSII photosynthetic pigments. In this work the pigment photobleaching has been studied on PSII core complexes, by observing the effects of different factors such as the aggregation state (PSII monomers and dimers were used), temperature (20 degrees C and 10 degrees C temperatures were tested) and the presence of the exogenous phospholipids (cardiolipin and phosphatidylglycerol). In particular, PSII resistance against white light stress was studied by means of UV/VIS Absorption and Fluorescence Emission measurements. It was found that PSII dimers resulted more resistant against photobleaching and that lower temperature reduces the pigment photodestruction. Moreover, the presence of phosphatidylglycerol or cardiolipin enhanced the PSII resistance to the photobleaching phenomenon, mainly at lower temperatures.  相似文献   

7.
Thermally Induced Chemiluminescence of Barley Leaves   总被引:1,自引:0,他引:1  
Abstract— An unconventional band in the thermoluminescence glow curve of barley leaves at about +50°C was examined. In contrast to bands usually observed around +50°C, this band (designated as CL) is not related to photosynthetic electron transport in photosystem II. The appearance of the CL band (1) requires previous freezing of the sample, (2) is not influenced by light excitation and (3) depends on the presence of oxygen. In pure oxygen the glow curves for both leaves and chloroplast suspension exhibit three maxima at about +40°C, +65°C and +90°C. Based on the emission spectra of the CL band and measurements with etiolated leaves, we suppose that the majority of emission corresponding to the CL band originates from chlorophyll. A lipoxygenase inhibitor, butylated hydroxytoluene, and sodium azide decrease the intensity of the CL band. We propose that the mechanism leading to emission of the CL band involves thermally stimulated production of an active oxygen species that results in lipid peroxidation.  相似文献   

8.
We have studied the inhibition of photosynthetic electron transport by UV-A (320-400 nm) radiation in isolated spinach thylakoids. Measurements of Photosystem II (PSII) and Photosystem I activity by Clark-type oxygen electrode demonstrated that electron flow is impaired primarily in PSII. The site and mechanism of UV-A induced damage within PSII was assessed by flash-induced oxygen and thermoluminescence (TL) measurements. The flash pattern of oxygen evolution showed an increased amount of the S0 state in the dark, which indicate a direct effect of UV-A in the water-oxidizing complex. TL measurements revealed the UV-A induced loss of PSII centers in which charge recombination between the S2 state of the water oxidizing complex and the semireduced Q(A)- and Q(B)- quinone electron acceptors occur. Flash-induced oscillation of the B TL band, originating from the S2Q(B)- recombination, showed a decreased amplitude after the second flash relative to that after the first one, which is consistent with a decrease in the amount of Q(B)- relative to Q(B) in dark adapted samples. The efficiency of UV-A light in inhibiting PSII electron transport exceeds that of visible light 45-fold on the basis of equal energy and 60-fold on the basis of equal photon number, respectively. In conclusion, our data show that UV-A radiation is highly damaging for PSII, whose electron transport is affected both at the water oxidizing complex, and the binding site of the Q(B) quinone electron acceptor in a similar way to that caused by UV-B radiation.  相似文献   

9.
Abstract— Time-resolved transmittance was used to extract in vivo optical properties of leaves of green plants experimentally. In time-resolved transmittance measurements an ultrashort light pulse is directed onto the surface of the object and the transmitted light is measured with a time resolution in the range of picoseconds. A table-top terawatt laser was used to generate 200 fs light pulses at 790 nm with a repetition rate of 10 Hz. The light pulses were focused through a cuvette filled with water to produce white light pulses and optical filters were placed in the beam path to select the wavelength of the light focused onto the leaf surface. The time profiles of the light transmitted through the leaves was recorded with a streak camera having a time resolution of about 2.5 ps. Results from Crassula falcata and Phaseolus vulgaris studied at 550, 670 and 740 nm are reported. The three selected wavelength regions represent medium, high and a low absorption of light, respectively. A library of curves was generated using Monte Carlo simulation, and the absorption and scattering coefficients were extracted by comparison of experimental curves with this library. Our results suggest that in the case of the thin (200 μm) Phaseolus leaves and certainly in the case of the thick (4 mm) Crassula leaves, light scattering plays an important role in light transport through the leaf and should also affect light flux in these leaves.  相似文献   

10.
The protochlorophyllide transformation process was investigated by using comparative analysis of 77 K fluorescence spectral changes occurring in isolated bundle sheath (BS) cells of etiolated Zea mays leaves after being exposed to a 200 ms saturating flash. Deconvolution analysis of the fluorescence spectra showed essential differences in the ratio of protochlorophyll(ides) and chlorophyll(ides) spectral forms indicating for BS cells to have a characteristic pathway of protochlorophyllide transformation. Bundle sheath cells showed a high ratio between non-photoactive protochlorophyll(ide)-F632 and photoactive protochlorophyllide-F655. In those cells, the 200 ms flash triggered a preferential formation of chlorophyll(ide)-F675 which remained stable in the dark for at least 90 min. Isolated BS cells showed an accumulation of chlorophyll(ide)-F675 resulting in the formation of inactive photosystem II. However for mesophyll cells of intact leaves, it was found to have a high ratio between photoactive and non-photoactive protochlorophyll(ide), showing the succession of chlorophyll(ide) forms usually known in C(3) plants. Protochlorophyllide phototransformation pathway in BS cells related to early stages of plastid differentiation triggered by light may indicate specific conditions for PSII assembly process leading to inactive PSII forms.  相似文献   

11.
We have used the sol-gel method to prepare SiO2 based matrix containing barley leaves extracts and studied the spectral characteristics of chlorophyll fluorescence of the glass under structural evolution promoted by heat treatment. One primary effect on the fluorescence for barley leaves embedded in glass is that PSII chlorophyll fluorescence transients are not present. We obtain a higher PSII thermostability for leaves embedded in xerogel matrix than in the green barley leaves. We observed for high temperatures that fluorescing aggregates are formed. The behavior of the PSII fluorescence under heat treatment will be used in subsequent works to study the microstructural evolution during the silica-gel-glass conversion and their optical properties.  相似文献   

12.
Lead (Pb(2+)) is a well-known highly toxic element. The mechanisms of the Pb(2+) toxicity are not well understood for photosynthesis. In this paper, we reported the effect of Pb(2+) on light absorption, distribution and conversion of spinach chloroplast by spectroscopy, and photochemical reaction activities. Several effects of Pb(2+) were observed: (1) the absorption peak intensity of chloroplast obviously decreased in red and blue region and produced optical flattering; (2) fluorescence quantum yield nearby 680 nm of chloroplast greatly declined; (3) the excitation band nearby 440 nm of chloroplast significantly descended; (4) Pb(2+) treatments reduced of the rate of whole chain electron transport, photochemical activities of PSII DCPIP photoreduction and oxygen evolution, but the photoreduction activities of PSI were little changed. Together, the studies of the experiments showed that Pb(2+) decreased absorption of light on spinach chloroplast and inhibited excitation energy to be absorbed by LHCII and transferred to PSII, then reduced the conversion from light energy to electron energy, and decelerated electron transport, water photolysis and oxygen evolution.  相似文献   

13.
The spectral characteristics of different kind of leaves extracts fluorescence embedded in silica xerogel matrix under structural evolution promoted by heat treatment was studied. We obtain a higher PSII thermostability for extract of leaves, rich in chlorophyll such as spinach, made in darker condition than extract of leaves made in lighter (non-dark) conditions, both embedded in xerogel matrix, which remain bioactive over a very long period of time. In other kind of leaves such geranium, after chlorophyll decomposition the quenching center are formed at temperatures about 800 °C, whereas in buxus sempervirens leaves fluorescing aggregates remain in temperatures as high as 1,000 °C, when their are embedded in silica xerogel matrix. In general blue-shift fluorescence is observed in all cases indicating the PSII denaturizing and formation of fluorescing aggregates in relatively high temperatures.  相似文献   

14.
Electron transport through photosystem II (PSII), measured as oxygen evolution, was investigated in isolated PSII particles and thylakoid membranes irradiated with white light of intensities (I) of 20 to about 4000 micromol of photons/(m2.s). In steady-state conditions, the evolution of oxygen varies with I according to the hyperbolic expression OEth = OEth(max)I/(L1/2 + I) (eq i) where OEth is the theoretical oxygen evolution, OEth(max) is the maximum oxygen evolution, and L1/2 is the light intensity giving OEth(max)/2. In this work, the mathematical derivation of this relationship was performed by using the Langmuir adsorption isotherm and assuming that the photon interaction with the chlorophyll (Chl) in the PSII reaction center is a heterogeneous reaction in which the light is represented as a stream of particles instead of an electromagnetic wave (see discussion in Turro, N. J. Modern Molecular Photochemistry; University Science Books: Mill Valley, CA, 1991). In accordance with this approximation, the Chl molecules (P680) were taken as the adsorption surfaces (or heterogeneous catalysts), and the incident (or exciting) photons as the substrate, or the reagent. Using these notions, we demonstrated that eq i (Langmuir equation) is a reliable interpretation of the photon-P680 interaction and the subsequent electron transfer from the excited state P680, i.e., P680*, to the oxidized pheophytin (Phe), then from Phe- to the primary quinone QA. First, eq i contains specific functional and structural information that is apparent in the definition of OEth(max) as a measure of the maximal number of PSII reaction centers open for photochemistry, and L1/2 as the equilibrium between the electron transfer from Phe- to QA and the formation of reduced Phe in the PSII reaction center by electrons in provenance from P680*. Second, a physiological control mechanism in eq i is proved by the observation that the magnitudes of OEth(max) and L1/2 are affected differently by exogenous PSII stimulators of oxygen evolution (Fragata, M.; Dudekula, S. J. Phys. Chem. B 2005, 109, 14707). Finally, an unexpected new concept, implicit in eq i, is the consideration of the photon as the substrate in the photochemical reactions taking place in the PSII reaction center. We conclude that the Langmuir equation (eq i) is a novel mathematical formulation of energy and electron transfer in photosystem II.  相似文献   

15.
In this work the effect of temperature and n-dodecyl-beta-d-maltoside (DM) on PSII complexes organization was investigated. An aggregation process of PSII monomers and dimers was documented at different temperatures and low DM concentration by steady-state fluorescence, absorption, circular dichroism, Rayleigh and dynamic light-scattering experiments. Measures of oxygen evolution enabled us to estimate the change in photoactivity of PSII during the aggregation. This process was found to be extensively reversed by increasing DM concentration as proved by means of steady-state fluorescence and dynamic light-scattering experiments.  相似文献   

16.
Photoinactivation kinetics of photosystem I (PSI)-mediated electron transport rate was compared to that of P700 content at room (22 degrees C) and low (4 degrees C) temperatures in isolated spinach thylakoid membranes. The high light treatment was carried out under aerobic and anaerobic conditions. At 22 degrees C the decrease of electron transport rate showed first order exponential kinetics. The amount of P700 decreased linearly, being less affected in the first hours of illumination. During photoinhibition at 4 degrees C in the presence of oxygen, the kinetics of inactivation of PSI photochemical activity and the content of P700 were different. It was found that 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) had different protective effect on the electron transport rate and on P700 content at both temperatures. Treatment with high light intensity under N(2) atmosphere had no effect on the electron transport rate or P700 content. The possible degradation of PSI reaction centre proteins was determined using immunoblot methods. In the presence of linear electron transport at 22 degrees C correlation between formation of toxic hydroxyl radicals and inhibition of oxygen uptake was observed.  相似文献   

17.
The origin of heat-induced chlorophyll fluorescence rise that appears at about 55-60 degrees C during linear heating of leaves, chloroplasts or thylakoids (especially with a reduced content of grana thylakoids) was studied. This fluorescence rise was earlier attributed to photosystem I (PSI) emission. Our data show that the fluorescence rise originates from chlorophyll a (Chl a) molecules released from chlorophyll-containing protein complexes denaturing at 55-60 degrees C. This conclusion results mainly from Chl a fluorescence lifetime measurements with barley leaves of different Chl a content and absorption and emission spectra measurements with barley leaves preheated to selected temperatures. These data, supported by measurements of liposomes with different Chl a/lipid ratios, suggest that the released Chl a is dissolved in lipids of thylakoid membranes and that with increasing Chl a content in the lipid phase, the released Chl a tends to form low-fluorescing aggregates. This is probably the reason for the suppressed fluorescence rise at 55-60 degrees C and the decreasing fluorescence course at 60-75 degrees C, which are observable during linear heating of plant material with a high Chl a/lipid ratio (e.g. green leaves, grana thylakoids, isolated PSII particles).  相似文献   

18.
Abstract— Chlorophyll a and I2 form a 1:1 addition compound, which exhibits a strong absorption maximum at about 360 nm. When dissolved in anaerobic methanol, this compound can be reversibly bleached by illumination with red light. Prolonged illumination at low temperatures (˜– 75°C) or intense illumination at room temperature reduces the height of the red absorp tion maximum to about half of its normal value. Since the thermal back reaction is negligibly slow at – 75°C, presumably the chlorophyll-I2 complex is converted completely to its bleached form, when illuminated under those conditions. This assumption leads to a simple mechanism which is consistent with the experimental data.  相似文献   

19.
Plants protect themselves against excessive light by the induction of ΔpH-dependent nonphotochemical quenching (qE) that is associated with de-epoxidation of violaxanthin (V) to zeaxanthin (Z) in thylakoid membranes. In this work, we report that low light (12 μmol photons m−2 s−1) is sufficient for a marked stimulation of the V to Z conversion in shortly preheated wheat leaves (5 min, 40°C), but without a substantial increase in qE. Re-irradiation of these leaves with high light led to a rapid induction of nonphotochemical quenching, implying a potential photoprotective role of low-light-induced Z in preheated leaves. On the contrary to low light conditions, preheated leaves exposed to high light behaved similar to nonheated leaves with respect to the V to Z conversion and qE induction. The obtained results indicate that low-light-induced lumen acidification in preheated leaves is high enough to activate V de-epoxidation, but not sufficiently high to induce the formation of quenching centers.  相似文献   

20.
Site-directed psbA mutants at the tyrosine Y112 position have been generated in Synechocystis PCC6803 cells. The mutation Y112F does not affect photosystem II (PSII) activity as compared with control 4 delta 1K cells. However, the Y112L mutant exhibits a photosynthetically impaired phenotype. PSII activity is not detectable in this mutant when grown at 30 mumol photons m-2 s-1, while low levels of the D1 and D2 proteins and oxygen evolution activity are present in the mutant cells grown at a low light intensity (0.5-1 mumol m-2 s-1). The recombination of the QB-/S2,3 states of PSII in the Y112L mutant cells as detected by thermoluminescence (TL) is altered. The TL signal emission maximum of these cells due to charge recombination of the S2,3/QB- occurs at 20 degrees C as compared to 35-40 degrees C for the wild-type cells, indicating a possible change in the S2,3/Yz equilibrium. The Y112L mutant cells are rapidly photoinactivated and impaired in the recovery of the PSII activity. These results suggest that replacement of the aromatic residue at position Y112 by a hydrophobic amino acid may alter the function of the donor-side activity and affects the degradation and replacement of the PSII core proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号