首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two samples of the microporous titanosilicate ETS-10 synthesised by different preparation procedures were compared for their ability to take up uranium from aqueous solutions using a batch-type technique. The ETS-10 samples were synthesised using either TiO2 or TiCl3 as a titanium source. The uptake of uranium on the materials was compared by determining the distribution coefficient and percentage sorption as a function of contact time, uranium concentration, and sorbent concentration. It was found that the difference in the synthesis procedures of the materials had a significant influence on the uptake of uranium.  相似文献   

2.
The microporous titanosilicate ETS-10 synthesized from gel with following molar composition: 1.0 Na2O: 1.49 SiO2 : 0.2 TiO2 : 0.6 KF : 1.28 HCl : 39.5 H2O was subjected to sorption of radioactive cations 115Cd2+, 204Hg2+, 60Co2+ and 137Cs+ (M) from aqueous solution, in the absence of ionic competition. The uptake of these cations on the ETS-10 was compared by means of the distribution coefficient (Kd) versus contact time and sorption capacity (R) at equilibrium. The FT-IR spectra of M-ETS-10 sorption products exhibit a modification of the absorption band, principally at 381 cm-1.  相似文献   

3.
Sodium oxide (NaOx) impregnated Engelhard Titanosilicate-10 (ETS-10) molecular sieve catalysts were prepared to enhance the basicity associated with ETS-10 and subsequently investigated for the cycloaddition of carbon dioxide to propylene oxide to produce propylene carbonate. For dry NaOx-modified ETS-10 catalysts that contained no adsorbed water, a maximum yield of propylene carbonate was achieved at a loading of 2.0 excess NaOx species per unit cell. However, the greatest enhancements in the rate of reaction were observed when small amounts of water were adsorbed onto the unmodified ETS-10 catalyst immediately prior to reaction. Surface-bound water appears to enhance the surface Bronsted acidity of the unmodified ETS-10 catalyst via the formation of surface -OH groups at lower water loadings, producing a surface of better-tuned acid-base bifunctional characteristics for the cycloaddition reaction. At levels of hydration greater than 12.5% by mass, the yield of propylene carbonate was further enhanced, but at a smaller rate than that observed at lower rehydration levels, which is more indicative of an enhanced transport effect. Adsorption microcalorimetry of carbon dioxide indicated that, at loadings less than 2.0 NaOx per unit cell, the total uptake of the CO2 adsorption sites required for the reaction were less than in the parent ETS-10 material. However, at higher levels of NaOx occlusion, where the total uptake and strength of the adsorption sites exceeded those observed for the as-received ETS-10 material, the cycloaddition activity of this catalyst suffered due to the reduced pore volume and surface area. It appears that precise tuning of both the surface acidity and basicity is crucial in creating an effective acid-base bifunctional ETS-10 catalyst for the cycloaddition reaction investigated.  相似文献   

4.
《Comptes Rendus Chimie》2015,18(10):1134-1142
Pharmaceuticals, personal care products and endocrine disruptors demonstrate huge potential to cause adverse ecological health effects at very low concentration in aquatic environment. There is a need to improve current purification technologies used in sewage and drinking-water treatment plants. This article aims at providing new insights into the recent development of natural and modified clay-based sorbents for the removal of aqueous contaminants such as pharmaceuticals and personal care products. The removal of six widely used pharmaceuticals: ibuprofen, diclofenac, ketoprofen, carbamazepine, as well as endocrine disrupting chemicals – bisphenol A and a bactericidal agent, triclosan – was examined by sorption onto eight adsorbents. Sorption was performed using natural and modified clay minerals – montmorillonite (Mt), vermiculite (VER), bentonite (B), kaolinite (K), commercial acid activated montmorillonites K10 and K30, and two carbonaceous-mineral nanocomposites, MtG5%T, BAlG3%C. This study showed that among the tested natural clays, vermiculite is the most promising sorbent for the removal of pharmaceuticals in purification processes. Among the modified clay minerals, the best results were achieved for carbonaceous bentonite and two acid activated montmorillonites K10 and K30. However, the removal of acidic pharmaceuticals on montomorillonite K10 and carbonaceous bentonite was strongly dependent on the pH value. In the case of vermiculite and acid-modified montmorillonite K30, the sorption of the selected compounds was not significantly affected by pH, which is crucial in wastewater treatment. The sorption constant divided by the specific surface area (Kd/A) is proposed to assess whether the surface area or chemical properties of the materials control the sorption process. Kd/A values were relatively high in the case of vermiculite, so it should be noticed that individual and specific surface properties of vermiculite were of crucial importance for sorption.  相似文献   

5.
This work investigates the sorption of americium [Am(III)] onto kaolinite and the influence of humic acid (HA) as a function of pH (3–11). It has been studied by batch experiments (V/m = 250:1 mL/g, C Am(III) = 1 × 10−5 mol/L, C HA = 50 mg/L). Results showed that the Am(III) sorption onto the kaolinite in the absence of HA was typical, showing increases with pH and a distinct adsorption edge at pH 3–5. However in the presence of HA, Am sorption to kaolinite was significantly affected. HA was shown to enhance Am sorption in the acidic pH range (pH 3–4) due to the formation of additional binding sites for Am coming from HA adsorbed onto kaolinite surface, but reduce Am sorption in the intermediate and high pH above 6 due to the formation of aqueous Am-humate complexes. The results on the ternary interaction of kaolinite–Am–HA are compared with those on the binary system of kaolinite–HA and kaolinite–Am and adsorption mechanism with pH are discussed. Effect of different molecular weight of HA, with three HA fractions separated by ultrafiltration techniques, on the Am sorption to kaolinite were also studied. The results showed that the enhancement of the sorption of Am onto kaolinite at the acidic pH conditions (pH 3–4) was higher with HA fractions of higher molecular weight. Also, the Am sorption over a pH range from 6 to 10 decreased with decreasing molecular weight of HA.  相似文献   

6.
The dynamic vapor water sorption and desorption experiments were performed on cellulosic fibers with different characteristics. The hysteresis between moisture sorption and desorption cycle at 10% relative humidity (RH) was independent on the total moisture regain and approximately 45% for all materials except for viscose fibers. Brunauer–Emmett–Teller surface volume (Vm) for moisture sorption and retention capacity of liquid water (WRV) were also measured. The Vm and WRV increase in proportion to the total amount of moisture sorption (Minf(total)) in all specimen except in poplar fiber. The coefficients of parallel exponential kinetics (PEK) were estimated by the curve-fitting of experimental data of the moisture regain, and the influences of the fiber characteristics on the PEK coefficients, the moisture regain, the hysteresis, Vm and WRV are discussed. The total equilibrium moisture content in the viscose fibers was higher but the moisture uptake and release rate was slower than the lyocell and poplar fibers. The cationization and the modification of shape of cross section accelerated the total equilibrium moisture content in the viscose fiber. A drying process at low temperature enhanced both the equilibrium moisture content and the moisture uptake and release rate in lyocell fibers while a spin finish retarded them. The total equilibrium moisture content was heightened by the crosslinking of the fiber, however, no obvious effect of the crosslinking on the moisture uptake and release rate was found. Effects of the type of the specimen and linear density on the moisture accessibilities are also discussed.  相似文献   

7.

The sorption process of Co(II) onto nanoparticles of calcium silicate doped with 5% CuO treated by humic acid was evaluated using batch technique. This process follows the second order kinetic model. Equilibrium isotherm models of Co(II) sorption onto the modified composite was 208.91 mg/g. Negative value of free energy change (ΔG0), confirms the spontaneous sorption of Co(II) ions onto the modified composite. The removal efficiency (R%) reached 96.9% using 0.5 g of the modified composite. Therefore, the composite could be used for treatment of radioactive waste containing 60Co.

  相似文献   

8.
The present study characterises sorption of two pesticides, namely, paraquat (PQ) and 2,4-dichlorophenoxyacetic acid (2,4-D) by an Oscillatoria sp.-dominated cyanobacterial mat. Sorption of PQ onto the test mat was not significantly affected by the pH of the solution within the pH range 2–7. However, 2,4-D sorption was strongly influenced by the solution pH and was maximum at pH 2. Whereas PQ sorption increased with increase in temperature, 2,4-D sorption showed an opposite trend. The sorption of PQ and 2,4-D achieved equilibrium within 1 h of incubation, independent of concentration of pesticide and mat biomass in the solution. The pseudo-second-order kinetic model better defined PQ sorption than the pseudo-first-order model, whereas 2,4-D sorption was well defined by both the models. Sorption isotherms of both the pesticides showed L-type curve. Freundlich model more precisely defined PQ sorption than Langmuir model, thereby suggesting heterogeneous distribution of PQ binding sites onto the biomass surface. However, the Langmuir model more correctly defined 2,4-D sorption, thus, indicating homogeneous distribution of 2,4-D binding sites onto the biomass surface. The test biomass is a good sorbent for the removal of PQ because it could, independent of pH of the solution, sorb substantial amount of PQ (q max = 0.13 mmol g−1).  相似文献   

9.
Herein, the sorption properties of Eu(III) on Na-attapulgite were performed by using batch sorption experiments under different experimental conditions, such as contact time, pH, ionic strength, humic acid and temperatures. The results indicated that the sorption of Eu(III) on Na-attapulgite was strongly dependent on pH and temperature. At low pH values, the sorption of Eu(III) was influenced by ionic strength, whereas the sorption was not affected by ionic strength at high pH values. The sorption of Eu(III) was mainly dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The sorption of Eu(III) onto Na-attapulgite increased with increasing temperature. The Langmuir and Freundlich models were applied to simulate the sorption isotherms, and the results indicated that the Langmuir model simulated the sorption isotherms better than the Freundlich model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were calculated from the temperature dependent sorption isotherms at 293, 313 and 333 K, respectively, and the results indicated that the uptake of Eu(III) on Na-attapulgite was an endothermic and spontaneous process. The results of high Eu(III) sorption capacity on Na-attapulgite suggest that the attapulgite is a suitable material for the preconcentration and immobilization of Eu(III) ions from large volumes of aqueous solutions.  相似文献   

10.
The sorption of Pu(IV), polymeric Pu(IV), Pu(V) and Pu(VI) from the 0.1 M NaClO4 solution onto multiwalled carbon nanotubes was investigated. The kinetic study of the sorption process have shown that the polymeric Pu(IV) has the highest sorption rate, while decrease of sorption rate for plutonium aqua-ions in the order Pu(VI) > Pu(IV) > Pu(V) was found. Strong dependence of sorption kinetics of ionic plutonium species on pH was shown, in contrast to polymeric species, that were shown to quantitatively sorb (99%) in the wide pH range (pH 2–10). Two different sorption mechanisms for ionic and polymeric plutonium species were proposed: on the bases of sorption isotherms chemisorptions of plutonium aqua-ions onto carbon nanotubes and through intermolecular interaction for the polymeric plutonium species was defined. Distribution coefficients of plutonium in various oxidation states were found to increase with pH, showing the highest values for polymeric plutonium sorption (K d  = 2.4 × 105 mL g−1 at pH = 6).  相似文献   

11.
Application study for the evaluation of sorption characteristics of sawdust as an economical sorbent material used for decontamination of radioisotopes cesium and europium from aqueous solution has been carried out in the present work. In this respect, sawdust (untreated and treated by HNO3) has been prepared from the commercial processing of wood for furniture production. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N2 adsorption and DFT software. Radiotracer method onto sawdust from aqueous solutions was studied in a batch technique with respect to pH, contact time, temperature. The kinetics of adsorption of Eu3+ and Cs+ have been discussed using five kinetic models namely, pseudo-first-order model, pseudo-second-order model, Elovich equation, intraparticle diffusion model, and modified Freundlich equation that have been tested in order to analysis the experimental data. Kinetic parameters and correlation coefficients were determined. It was shown that the second-order kinetic equation could describe the sorption kinetics for two metal ions. The metal uptake process was found to be controlled by intraparticle diffusion. Thermodynamic parameters, such as ΔH, ΔG and ΔS, have been calculated by using the thermodynamic equilibrium coefficient obtained at different temperatures. The obtained results indicated that endothermic nature of sorption process for both 152+154Eu and 134Cs onto sawdust.  相似文献   

12.
A series of novel the semicarbazone derivatives of calix[4]arene have been synthesized and then immobilized onto amino functionalized magnetic nanoparticles. Magnetic Fe3O4 nanoparticles were prepared by the chemical co-precipitation of Fe(III) and Fe(II) ions and the nanoparticles were modified directly by 3-aminopropyltriethoxy silane (APTES) to introduce reactive amine groups onto the particles’ surface. The characterization of the prepared compounds was made by FT-IR, elemental analysis, TGA/DTG and NMR techniques. The sorption properties of the new calix[4]arene based magnetic sorbents toward Cr(VI) ion were also studied. The results showed that the prepared magnetic nanoparticles were effective sorbents for the removal of Cr(VI) ion. Also, Langmuir and Freundlich isotherm models were applied for Cr(VI) ion sorption by using MN-C2 and it was found that the experimental data confirmed to Langmiur isotherm model.  相似文献   

13.
The removal of heavy metal ion Co(II) from aqueous solution is studied using γ-Al2O3 by batch technique. The experiments are performed at T = 20 ± 2 °C, in 0.01 M NaNO3 solutions and under aerobic conditions. The effect of pH, ionic strength, fulvic acid (FA) and alumina concentration on the sorption of Co(II) on alumina are also respectively investigated. The pH affects the sorption of Co(II) significantly as compared with the effect of FA and ionic strength. The results indicate that strong chemical bonds are formed between Co(II) and the bare or FA coated alumina surface, and a transition from the adsorption to surface-induced precipitation of Co(II) on alumina surface takes place. The addition sequences of Co/FA on Co(II) sorption is also studied and the results indicate that the sorption of Co(II) in ternary system is independent of addition sequences. The results also suggest that the sorption of metal ions on mineral surface depends on the nature of mineral, nature of organic ligand and nature of metal ion.  相似文献   

14.
In this study, a novel magnetic nanoadsorbent was synthesized by grafting β‐cyclodextrin onto the modified surface of Fe3O4 nanoparticles for the sorption and extraction of sertraline hydrochloride from human biological fluids. The extracted sertraline hydrochloride was measured by high‐performance liquid chromatography. The grafted nanosorbent was confirmed by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, and elemental analysis. The kinetic sorption of sertraline hydrochloride by magnetic nanosorbent was 1 h. The best temperature for sorption of sertraline hydrochloride was at 25°C at an optimum pH of 5. The adsorbed sertraline hydrochloride can be desorbed by using methanol solution containing acetic acid (5%) and trifluoroacetic acid (1%).  相似文献   

15.
This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.  相似文献   

16.
Lessonia nigrescens and Lessonia trabeculata kelps have been tested for the sorption of mercury from aqueous solutions. A pretreatment (using CaCl2) allowed stabilizing the biomass that was very efficient for removing Hg(II) at pH 6–7. Sorption isotherms were described by the Langmuir equation with sorption capacities close to 240–270 mg Hg g−1 at pH 6. The temperature had a negligible effect on the distribution of the metal at equilibrium. The presence of chloride anions had a more marked limiting impact than sulfate and nitrate anions. The uptake kinetics were modeled using the pseudo-second-order equation that fitted better experimental data than the pseudo-first-order equation. The particle size hardly influenced sorption isotherms and uptake kinetics, indicating that sorption occurs in the whole mass of the biosorbent and that intraparticle mass transfer resistance was not the limiting rate. Varying the sorbent dosage and the initial metal concentration influenced the equilibrium, but the kinetic parameters were not drastically modified. Metal can be eluted with hydrochloric acid, citric acid, or acidic KI solutions.  相似文献   

17.
Summary The sorption of Th(IV) onto TiO2 was studied by the batch technique as a function of pH and ionic strength at moderate concentration (10-4-10-5 mol/l) and in the presence and absence of phosphate. It was found that the sorption rate of Th(IV) was relatively slow, the sorption percent was abruptly increased from pH 2 to 4, and the sorption was decreased with increasing ionic strength as a whole. In the concentration range of Th(IV) from trace concentration to 1.4 . 10-4 mol/l and in the absence of phosphate, the sorption isotherms were roughly fitted the Freundlich equation at different ionic strengths and approximately constant pH. These sorption characteristics of Th(IV) onto TiO2 were compared with those of uranyl on the same sorbent. In addition, the positive effect of phosphate on the sorption of Th(IV) onto TiO2 was demonstrated obviously and can be attributed to strong surface binding of phosphate, and the subsequent formation of ternary surface complexes of Th(IV). The difference between the sorption characteristics of Th(IV) ions and uranyl ions onto TiO2 is discussed.  相似文献   

18.
Magnetite (Fe3O4) nanoparticle was synthesized using a solid state mechanochemical method and used for studying the sorption of uranium(VI) from aqueous solution onto the nanomaterial. The synthesized product is characterized using SEM, XRD and XPS. The particles were found to be largely agglomerated. XPS analysis showed that Fe(II)/Fe(III) ratio of the product is 0.58. Sorption of uranium on the synthesized nanomaterials was studied as a function of various operational parameters such as pH, initial metal ion concentration, ionic strength and contact time. pH studies showed that uranium sorption on magnetite is maximum in neutral solution. Uranium sorption onto magnetite showed two step kinetics, an initial fast sorption completing in 4–6 h followed by a slow uptake extending to several days. XPS analysis of the nanoparticle after sorption of uranium showed presence of the reduced species U(IV) on the nanoparticle surface. Fe(II)/Fe(III) ratio of the nanoparticle after uranium sorption was found to be 0.48, lower than the initial value indicating that some of the ferrous ion might be oxidized in the presence of uranium(VI). Uranium sorption studies were also conducted with effluent from ammonium diuranate precipitation process having a uranium concentration of about 4 ppm. 42% removal was observed during 6 h of equilibration.  相似文献   

19.
Hollow carbon nano-polyhedrons (HCNPHs) supported on Engelhard Titanosilicate-10 (ETS-10) were synthesized by wet impregnation technique using tetrahydrofuran as a solvent. Synthesized HCNPHs/ETS-10 nanosorbent was characterized by X-ray diffraction, Raman spectra, N2-adsorption–desorption isotherm, BET surface area, and scanning electron microscopy to confirm the morphology and uniformity of carbon particles ranging from 50 to 70 nm in diameter. Sorption characteristics of this nanosorbent for krypton at various carbon loadings were determined using a bench-scale column apparatus. The dynamic sorption capacity of HCNPHs/ETS-10 nanosorbent calculated from the breakthrough curve, 0.75 mmol/kg, which was ~15 % higher than for that of activated carbon. The effect of temperature on the adsorption capacity was studied between 263–293 K. Operational capacity of the nanosorbent was found to be 0.45 mmol/kg at 263 K. The experimental results indicate that 10 wt% HCNPHs/ETS-10 nanosorbent showed promising results for krypton adsorption, indicating its potential as an economical and active sorbent for krypton removal from the off-gas streams resulting from operations for recycle of used nuclear fuel.  相似文献   

20.
In the present paper, we describe a new mechanical method characterising the physico-chemical properties of human skin and their variations along with liquid exposure scenario to the skin surface. A specific bio-tribometer has been developed to study the physical properties of the skin in vivo by measuring the maximum adhesion force between the skin and the bio-tribometer. We showed that the lipidic film present on skin surface was responsible for skin adhesion due to capillary phenomena. The measure of pull-off force between skin and bio-tribometer has permitted to estimate the liquid/vapour surface tension of the lipidic film (γLV ≈ 6.3 mJ/m2 in 30-year-old volunteer). The kinetic of sorption/desorption (sorption means indifferently adsorption and absorption process) of distilled water from the skin has been observed through the variation of the indenter/skin pull-off force versus time after distilled water application to the skin surface. This permits to follow in real time the variation of the skin physico-chemical properties after liquid application onto the skin surface. Finally, the increasing of skin friction coefficient after distilled water application onto skin surface was explained by the capillary adhesion force between the probe and the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号