首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3-(5'-tetrazolylazo)-2,6-Diaminotoluene (TEADAT, H(3)L(2+)) forms stable 1:1 and 1:2 (metal:ligand) pink-red complexes (lambda(max) 506 and 536 nm) with palladium(II). The apparent molar absorptivity of 1:2 complex is 5.2 x 10(4) 1.mol(-1). cm(-1) at 536 nm. Equilibrium constants beta*(nl) for reactions PdCl(2-)(4) + nH(3)L(2+) right harpoon over left harpoonright harpoon over left harpoon PdCl(4-n) (H(2)L)(2n-2)(n) + n Cl(-) + n H(+) were determined: logbeta*(1) = 4.09 +/- 0.05, logbeta*(2) = 8.40 +/- 0.02, corresponding stability conditional constants of PdCl(3)(H(2)L) and PdCl(2)(H(2)L)(2+)(2) were log beta(1) = 19.03, log beta(2) = 26.74. The formation of complexes was rather slow but could be speeded up considerably by the catalytic effect of trace amounts of thiocyanate. Constant absorbance values were thus reached in 2-5 min. A rapid, sensitive and highly specific method for the determination of palladium(II) at pH 1.42 in 0.25M NACl has been worked out with a detection limit of 0.54 mug. Interference of precious and common metal ions have been studied and the method has been applied for the determination of palladium in Pd asbestos, oakay alloys and various catalysts and for the determination of palladium in precious metals.  相似文献   

3.
The dissociation constants of the carboxyl groups (pK(a1) = 2.2, n = 1.8) and amino groups (pK(a2) = 9.5, n(2) = 1.6) of a sorbent prepared by reacting l-proline with a cross-linked chloromethylated styrene polymer have been determined by potentiometric titration. The potentiometrically measured stability constants of the Cu(II) complexes of the resin (logbeta(1) = 6.9 and log beta(2) = 12.4) were found to be close to the values for the Cu(II) complexes of N-benzyl-l-proline. For complexed resins of alpha-amino-acid type the pH-values of decomplexation do not appear to be directly correlated with the stability constants.  相似文献   

4.
The hydrolysis of praseodymium III in 2 M sodium chloride at 303 K was studied. Two methods were used: pH titration followed by a computational refinement and solvent extraction in the presence of a competitive ligand. The hydrolysis constants obtained by pH titration were: logbeta(1,H)=-7.68+/-0.07, logbeta(1,2H)=-15.10+/-0.03, and beta(1,3H)=-23.80+/-0.04. The stability constants of praseodymium carbonate complexes were determined by pH titration as well and were: logbeta(1,CO(2-)(3))=5.94+/-0.08 and logbeta(1,2CO(2-)(3))=11.15+/-0.15. Praseodymium carbonate species were taken into consideration for calculating the first hydrolysis constants by the solvent extraction method and the value obtained was: logbeta(1,H)=-7.69+/-0.27. The values for logbeta(1,H) attained by both methods are the same. The species-distribution diagram was obtained from the stability constants of praseodymium carbonate complexes and hydrolysis products in the conditions of the present work.  相似文献   

5.
Hulanicki A  Minczewska M 《Talanta》1967,14(6):677-683
The extraction of copper, lead, cadmium, nickel and zinc dithizonates was investigated in the presence of ammonium bis(carboxy-methyl)dithiocarbamate. For all metals studied, except zinc, masking of extraction was observed, depending on the amount of the dithio-carbamate in the aqueous phase. From the shift of the pH(1 2 ) values for dithizonate extraction, the stability constants beta(2) for the metal complexes with bis(carboxymethyl)dithiocarbamate were calculated. The logarithms of the constants are 21.46, 15.45,11.24 and 7.93 for the copper, lead, cadmium and nickel complexes respectively.  相似文献   

6.
Misumi S  Aihara M 《Talanta》1972,19(4):549-557
Cadmium, zinc and manganese(II) iodide complexes have been studied polarographically in acetonitrile and the electrode reactions for these complexes discussed. The overall stability constants of the iodide complexes of these metal ions were evaluated and corrected for the effect of the ion-pairing electrolyte. The values for log beta(4) of CdI(4)(2-) and ZnI(4)(2-) are 26.2 and 18.4 respectively and the values found for the Mn(II) iodide complex are log beta(1) = 3.5, log beta(2) = 5.6, log beta(3) = 7.8, log beta(4)= 10.0, log beta(5) = 12.2 and log beta(6) = 14.4. Within certain limits, the wave-height for each complex is proportional to the metal concentration.  相似文献   

7.
The statistical analysis of variance has been applied to the values of the equilibrium constants of the glycinate-proton and glycinate-nickel systems, determined in different laboratories by pH-titration in aqueous solution. The analysis shows how the main part of the error derives from the variability from one titration to another even in the same laboratory. Therefore the data for a single titration (k) must be processed separately, thus yielding a mean value for the equilibrium constant logbeta (pqr)(k) of the species M(p)H(q)L(r); from these mean values for different titrations in each laboratory l, a within-laboratory grand average, logbeta (pqr)(l), can be calculated; the variance of this grand average measures the experimental error. A further analysis of the data from the different participating laboratories shows that there were no significant differences between laboratories for the constants reported. From these results it can be inferred that all the values of the mean constants logbeta (pqr)(k) for one species, as determined separately for each titration in four laboratories, belong to the same population. A chi(2) analysis of these populations demonstrates that the stability constants of the species HL, H(2)L(+), NiL(+), NiL(2) (with L(-) = glycinate) are normally distributed, but not that for NiL(-)(3). Therefore, general mean values of the first four constants can be calculated and proposed as reliable standard values at 25 degrees and I = 1.0M Na(Cl): protonation of glycinate, log beta(011) = 9.651(12), log beta(021) = 12.071(26); nickel-glycinate complexes, log beta(101) = 5.615(35), log beta(102) = 10.363(62). These values indicate that the standard deviations are rather higher than those often reported in the literature.  相似文献   

8.
Leggett DJ  McBryde WA 《Talanta》1975,22(10-11):781-789
The reactions of picoline-2-aldehyde thiosemicarbazone (PATS) with silver, mercury, iron(II) and cobalt have been investigated in various environments. The compositions of the complexes have been investigated by continuous variation and molar ratio methods. Stability constants have been evaluated by means of SCOGS and a new program SQUAD. The formation constants, measured at 25 degrees and 0.10M ionic strength were as follows: Ag(PATS), logbeta(101) = 13.40; HgH(PATS), log beta(1110) = 23.6; HgH(2)(PATS)(2), log beta(1220) = 42.1; HgH(2)(PATS)(EDTA), log beta = 44.0; FeH(3)(PATS)(3), log beta(133) = 44.9; FeH(2)(PATS)(3), log beta(123) = 41.7; FeH(PATS)(3), log beta(113) = 38.4; Fe(PATS)(3), log beta(103) = 34.2. A tentative value for a cobalt complex is also suggested. A computer program, suitable for calculation of optimum conditions for a chemical analysis is also introduced and its use is illustrated for the silver-PATS-EDTA system.  相似文献   

9.
The formation constants of dioxouranium(VI)-1,2,3-propanetricarboxylate [tricarballylate (3-), TCA] complexes were determined in NaCl aqueous solutions at 0 < or = I/mol L(-1) < or = 1.0 and t=25 degrees C, by potentiometry, ISE-[H+] glass electrode. The speciation model obtained at each ionic strength includes the following species: ML-, MLH0, ML2(4-) and ML2H3- (M = UO2(2+) and L = TCA). The dependence on ionic strength of protonation constants of 1,2,3-propanetricarboxylate and of the metal-ligand complexes was modeled by the SIT (Specific ion Interaction Theory) approach and by the Pitzer equations. The formation constants at infinite dilution are [for the generic equilibrium p UO22+ + q (L3-) + r H+ = (UO2(2+))p(L)qHr(2p-3q+r); betapqr]: log beta110 = 6.222 +/- 0.030, log beta111 = 11.251 +/- 0.009, log beta121 = 7.75 +/- 0.02, log beta121 = 14.33 +/- 0.06. The sequestering ability of 1,2,3-propanetricarboxylate towards UO2(2+) was quantified by using a sigmoid Boltzman type equation.  相似文献   

10.
Gaur JN  Palrecha MM 《Talanta》1968,15(7):583-588
The malonate, succinate, glutarate and adipate complexes of lead have been examined polarographically and the overall stability constants evaluated. The values found are log beta(1) = 2.60, 2.40, 2.48, 2.38; log beta(2) = 3.62, 3.73, 3.45, 3.20; log beta(3) = 4.32, 4.11, 3.90, 3.69, for the malonate, succinate, glutarate and adipate complexes respectively.  相似文献   

11.
A simple, selective and sensitized spectrophotometric method for determination of trace amounts of Fe3+ ion in tap and waste water solutions has been described. The spectrophotometric determination of Fe3+ ion using Ferron in the presence of N,N-Dodecytrimethylammonium bromide (DTAB) has been carried out. The Beer's law is obeyed over the concentration range of 0.05-2.6 microg mL(-1) of Fe3+ ion with the relative standard deviation (RSD %) <0.2% and the molar absorptivity of complexes in pH 3.5 is 3.8 x 10(3) L mol(-1) cm(-1). Potentiometric pH titration has been used for prediction of protonation constants of ferron, and evaluating its stoichiometry and respective stability constant with Fe3+ ion. As it is obvious the most likely species of ferron alone and its complexes are LH (log = 7.64), LH2 (logK = 10.52), LH3 (logK = 11.74) and ML2 (logbeta = 23.68), ML3 (logbeta = 23.68), ML3H (logbeta = 23.68), ML3H2 (logbta = 23.68) and ML(OH)2 (logbeta = 23.68) respectively.  相似文献   

12.
Kucharska U 《Talanta》1997,44(1):85-96
The effect of Co(2+) and Ni(2+) ions on the electrochemical reduction of pterin and its derivatives, pteroic and pteroylmonoglutamic acids, has been studied. The measurements were carried out in aqueous solutions at fixed pH (7.5 +/- 0.2), temperature (298 +/- 0.2 K) and ionic strength (mu = 1.00; NaClO(4)) using polarographic techniques. By employing cyclic voltammetry and differential pulse polarography displacements were determined of the half-wave potentials E (1 2 ) of ligands of the reducible organic compounds at a dropping mercury electrode. The recorded polarograms and inherent potential differences were then utilized to calculate conditional stability constants of the complexes. The Casassas-Eek method was employed for the interpretation of the potential differences of the free and complexed ligands. The log beta(1) values of the stability constants revealed moderate stability of the complexes. The donor atoms of the ligands in the coordination compounds have also been identified.  相似文献   

13.
Machado CM  Cukrowski I  Soares HM 《Talanta》2006,68(3):819-830
In this work, the complexation of cadmium and zinc ions by 3-[N-tris(hydroxymethyl)methylamine]-2-hydroxypropanesulfonic acid (TAPSO), a commercial biological buffer, was evaluated using three electrochemical techniques, at fixed total-ligand and total-metal concentration ratio and varied pH, at 25.0+/-0.1 degrees C and ionic strength set to 0.1M KNO(3). For both metal-ligand systems, complexation was evidenced in the pH range close to deprotonation of the ligand and the final models were optimised after a meticulous graphical analysis. For Cd-(TAPSO)(x)-(OH)(y) system, two complexes, CdL and CdL(2), were identified in the buffering region of the ligand. The proposed final model for this system is: CdL, CdL(2) and CdL(2)(OH) with stability constants, as logbeta, of 2.2, 4.2 and 8.6, respectively. For Zn-(TAPSO)(x)-(OH)(y) system, the complex ZnL is the main species formed in the buffering pH range. The proposed final model is ZnL, ZnL(OH) and ZnL(OH)(2) with overall refined stability constants (as logbeta) to be: 2.5, 7.2 and 13.2, respectively.  相似文献   

14.
Rauret G  Pineda L  Compaño R 《Talanta》1989,36(6):701-703
The distribution equilibrium of the lead-cnha complex in the water-methyl isobutyl ketone (MIBK) system has been studied at 25 degrees . From graphical treatment of the equilibrium data, it was deduced that PbL(2) is the complex extracted. By use of the program LETAGROP-DISTR, values for the distribution and the stability constants of PbL(2) have been calculated: log K(DC) = 1.84 +/- 0.11; log beta(1) = 6.68 +/- 0.09 and log beta(2) = 10.28 +/- 0.09. On the basis of these results and those of previous studies, a method for determination of lead(II), copper(II) and cadmium(II) by atomic-absorption spectrometry, after extraction with cnha and 4-methylpyridine into MIBK, is proposed.  相似文献   

15.
Xing W  Ingman F 《Talanta》1982,29(8):707-711
The complexation reaction between Alizarin complexan ([3-N,N-di(carboxymethyl)aminomethyl]-1,2-dihydroxyanthraquinone; H(4)L) and zinc(II), nickel(II), lead(II), cobalt(II) and copper(II) has been studied by a spectrophotometric method. All these metal ions form 1:1 complexes with HL; 2:1 metal:ligand complex were found only for Pb(II) and Cu(II). The stability constants are (ionic strength I = 0.1, 20 degrees C): Zn(2+) + HL(3-) right harpoon over left harpoon ZnHL(-) log K +/- 3sigma(log K) = 12.19 +/- 0.09 (I = 0.5) Ni(2+) + HL(3-) right harpoon over left harpoon NiHL(-) log K +/- 3sigma(log K) = 12.23 +/- 0.21 Pb(2+) + HL(3-) right harpoon over left harpoon PbHL(-) log K +/- 3sigma(log K) = 11.69 +/- 0.06 PbHL(-) + Pb(2+) right harpoon over left harpoon Pb(2)L + H(+) log K approximately -0.8 Co(2+) + HL(3-) right harpoon over left harpoon CoHL(-) log K 3sigma(log K) = 12.25 + 0.13 Cu(2+) + HL(3-) right harpoon over left harpoon CuHL(-) log K 3sigma(log K) = 14.75 +/- 0.07 Cu(2+) + CuHL(-) right harpoon over left harpoon Cu(2)L + H(+) log K approximately 3.5 The solubility and stability of both the reagent and the complexes and the closenes of the values of the stability constants make this reagent suitable for the photometric detection of several metal ions in the eluate from an ion-exchange column.  相似文献   

16.
Stability constants of cyanoacetato complexes of cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II) and lead(II) were determined potentiometrically at 25.0 +/- 0.1 degrees and ionic strength 2M (sodium perchlorate). The stability constants were evaluated by a weighted least-squares method.  相似文献   

17.
本文提出一种近似处理方法,将核实法推广到极谱法中有沉淀的体系。  相似文献   

18.
Elenkova NG  Popova E 《Talanta》1975,22(10-11):925-929
The reaction of magnesium or aluminium ions with Eriochrome Cyanin RC in alkaline medium leads to formation of a complex of type ML. The molar absorptivities of the complexes are 1.90 +/- 0.14 x 10(3)1. mole(-1).cm(-1) at 570 nm for the magnesium complex and 3.87 +/- 0.04 x 10(4) at 555 nm for the aluminium complex. The conditional stability constants of the complexes were determined at various pH values, and hence the overall formation constants, which were found to be log beta(111) = 8.65 +/- 0.06 for MgOHL, log beta(121) = 22.29 +/- 0.05 for AlH(2)L, log beta(111) = 18.25 +/- 0.14 for AlHL, and log beta(101) = 13.66 +/- 0.01 for AlL.  相似文献   

19.
The formation of ternary UO2(2+)-(OH-)-SO4(2-) complexes has been studied at 25 degrees C in 3 M NaClO4 ionic medium by measurements with a glass electrode. The solutions had uranium concentrations between 0.3 and 30 mM, sulfate between 20 and 200 mM, and 1.66 < or = [SO4(2-)]/[U(VI)] < or = 300. The hydrogen ion concentration ranged from 10(-3) M to incipient precipitation of basic sulfates. This occurred, depending on the metal concentration, at [H+] between 10(-4) and 10(-5.3) M. In the interpretation of the data the stabilities of binary complexes were assumed from independent sources. The data could be explained with the mixed complexes and equilibria (beta(pqr)(3sigma) refers to pUO2(2+) + qH2O + rSO4(2-) <==> (UO2)p(OH)q(SO4)r(2p-q-2r) + qH+): logbeta222 = -2.94 +/- 0.03, logbeta341 = -9.82 +/- 0.06, logbeta211 = -0.30 +/- 0.09, logbeta212 = 1.09 +/- 0.09, logbeta351 = -15.04 +/- 0.09 and logbeta462 = -14.40 +/- 0.06. The fit could be improved by including UO2OH+ with logbeta110 = -5.1 +/- 0.1. The identity of the minor species remains, however, an open question.  相似文献   

20.
EDTA forms stable complexes with plutonium that are integral to nuclear material processing, radionuclide decontamination, and the potentially enhanced transport of environmental contamination. To characterize the aqueous Pu(4+/3+)EDTA species formed under the wide range of conditions of these processes, potentiometry, spectrophotometry, and cyclic voltammetry were used to measure solution equilibria. The results reveal new EDTA and mixed-ligand complexes and provide more accurate stability constants for previously identified species. In acidic solution (pH < 4) and at 1:1 ligand to metal ratio, PuY (where Y4- is the tetra-anion of EDTA) is the predominant species, with an overall formation constant of log beta110 = 26.44. At higher pH, the hydrolysis species, PuY(OH)- and PuY(OH)(2)2-, form with the corresponding overall stability constants log beta(11 - 1) = 21.95 and log beta(11 - 2) = 15.29. The redox potential of the complex PuY at pH = 2.3 was determined to be E(1/2) = 342 mV. The correlation between redox potential, pH, and the protonation state of PuY- was derived to estimate the redox potential of the Pu(4+/3+)Y complex as a function of pH. Under conditions of neutral pH and excess EDTA relative to Pu4+, PuY(2)4- forms with an overall formation constant of log beta120 = 35.39. In the presence of ancillary ligands, mixed-ligand complexes form, as exemplified by the citrate and carbonate complexes PuY(citrate)3- (log beta1101 = 33.45) and PuY(carbonate)2- (log beta1101 = 35.51). Cyclic voltammetry shows irreversible electrochemical behavior for these coordinatively saturated Pu4+ complexes: The reduction wave is shifted approximately -400 mV from the reduction wave of the complex PuY, while the oxidation wave is invariant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号