首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocrystalline N-doped TiO2 powders were successfully prepared by hydrothermal reaction for 2 h at low temperature (120 °C) and at an applied pressure of 3 MPa. The grain size of the powders (calculated by use of Scherrer’s method) ranged from 8.2 to 10.2 nm. The BET specific surface area ranged from 151.0 to 220.0 m2/g. A significant shift of the light absorption edge toward the visible light zone was observed in the UV–visible spectra. XPS results showed that nitrogen atoms were incorporated into the TiO2 lattice. The photocatalytic activity of the synthesized N-doped TiO2 powders was evaluated by measurement of photodegradation of methylene blue (MB) in aqueous solution under visible light irradiation. The amount of MB degraded increased with increasing illumination intensity.  相似文献   

2.
In this work, the Fe-doped mixed crystal TiO2 photocatalyst which can utilize visible light was prepared by sol-gel and heat-treated methods. During heat-treatment, the phase transformation of Fe-doped TiO2 powder occurs and the process is characterized by XRD and TG-DTA technologies. Otherwise, the sizes and shapes of Fe-doped and undoped TiO2 powders were also compared using TEM images. The azo fuchsine in aqueous solutions, as a model compound, was treated under visible light irradiation using Fe-doped mixed crystal TiO2 powders as photocatalyst. The results showed that, under visible light irradiation, the (0.25%) Fe-doped mixed crystal TiO2 powder heat-treated at 600°C for 3.0 h behaved very high photocatalytic activities for degradation of azo fuchsine. The remarkable improvement of the photocatalytic activity of TiO2 powder was elucidated through the cooperative effects of iron doping and phase transformation. The iron doping can restrain the recombination of photogenerated electron-hole pairs and the phase transformation can enhance the absorption of visible light. Furthermore, other influence factors such as azo fuchsine concentration, solution acidity, Fe3+ ion content and irradiation time were also studied. Thus, this method is applicable for the treatment of wastewater.  相似文献   

3.
Nano-sized TiO2–60 wt% SrO composite powders were synthesized from titanium isopropoxide and Sr(OH)2·8H2O by use of a sol–gel method. Ag spot-coated TiO2–60 wt% SrO composite powders containing 3, 5, or 7 wt% Ag were synthesized by hydrothermal-assisted attachment, by use of Ag hydrosol in a high-pressure bomb at 250 °C and 450 psi. Nano-sized Ag particles approximately 5–25 nm in diameter adhered to the TiO2–60 wt% SrO2 composite powders. The photocatalytic activity of Ag spot-coated TiO2–SrO powders in the degradation of phenol showed that all were highly active when irradiated with UV light. TiO2–60 wt% SrO composite powder spot-coated with 5 wt% Ag was more photocatalytically active under visible light than TiO2–SrO composite powder.  相似文献   

4.
The metallic glass/titanium dioxide powders (MG/TiO2) with enhanced photocatalytic oxidation activity were synthesized, which exhibit a higher efficiency in decolorizing methylene blue solutions (MB). Compared with the pure TiO2 and crystalline alloy/TiO2 (CA/TiO2) under the same circumstances, its degradation rate was 60 % and 30 % higher, respectively. Furthermore, compared with the CA/TiO2, the MG/TiO2 photocatalytic rate was three times faster when decolorizing MB. Considering the excellent intrinsic high-performance photocatalytic degradation under visible light irradiation, these novel powders were proven to have potential applications in water purification industry.  相似文献   

5.
TiO2 thin film photocatalysts which could induce photoreactions under visible light irradiation were successfully developed in a single process by applying an ion engineering technique, i.e., the radio frequency (RF) magnetron sputtering deposition method. The TiO2 thin films prepared at temperatures greater than 773 K showed the efficient absorption of visible light; on the other hand, the TiO2 thin films prepared at around 573 K were highly transparent. This clearly means that the optical properties of TiO2 thin films, which absorb not only UV but also visible light, can be controlled by the preparation temperatures of the RF magnetron sputtering deposition method. These visible light responsive TiO2 thin films were found to exhibit effective photocatalytic reactivity under visible light irradiation (λ > 450 nm) at 275 K for the reductive decomposition of NO into N2 and N2O. From various characterizations, the orderly aligned columnar TiO2 crystals could be observed only for the visible light responsive TiO2 thin films. This unique structural factor is expected to modify the electronic properties of a TiO2 semiconductor, enabling the efficient absorption of visible light.  相似文献   

6.
Two different types of nitrogen-containing TiO2 were synthesized via an acid-modified sol–gel method. Yellow-colored interstitial and white substitutional nitrogen-containing TiO2 powders were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller specific surface area and Barrett–Joyner–Halenda pore size distribution analyses, scanning electron microscopy, transmission electron microscopy and UV–vis absorption spectroscopy. The band gaps of interstitial and substitutional nitrogen-containing TiO2 ceramics were estimated from UV–vis spectroscopy data to be 2.6 and 2.8 eV, respectively. Prepared substitutional nitrogen-containing TiO2 featured steep light absorption edge with an approximately parallel characteristic to that in pure TiO2. This fact is due to band-to-band visible light absorption ability of substitutional nitrogen-containing TiO2. The photocatalytic properties of the produced nitrogen-containing TiO2 samples were compared for the degradation of Direct Red 28 azo dye. Further studies were also devised to compare the catalytic efficiency of the nitrogen-containing TiO2 powders with the pure TiO2 synthesized via the similar sol–gel method. The produced nitrogen-containing TiO2 samples revealed superior photocatalytic properties in comparison with pure TiO2 due to their remarkable band gap narrowing, surface oxygen vacancies and much more surface defects. The results also revealed that the substitutional nitrogen-containing TiO2 is the most effective photocatalyst under ultraviolet and visible light irradiation.  相似文献   

7.
Photocatalytic degradation of the reactive triazine dyes Reactive Yellow 84 (RY 84), Reactive Red 120 (RR 120), and Reactive Blue 160 (RB 160) on anatase phase N-doped TiO2 in the presence of natural sunlight has been carried out in this work. The effect of experimental parameters like initial pH and concentration of dye solution and dosage of the catalyst on photocatalytic degradation have also been investigated. Adsorption of dyes on N-doped TiO2 was studied prior to photocatalytic studies. The studies show that the adsorption of dyes on N-doped TiO2 was high at pH 3 and follows the Langmuir adsorption isotherm. The Langmuir monolayer adsorption capacity of dyes on N-doped TiO2 was 39.5, 86.0, and 96.3 mg g?1 for RY 84, RR 120, and RB 160, respectively. The photocatalytic degradation of the dyes follows pseudo first-order kinetics and the rate constant values are higher for N-doped TiO2 when compared with that of undoped TiO2. Moreover, the degradation of RY 84 on N-doped TiO2 in sunlight was faster than the commercial Aeroxide® P25. However, the P25 has shown higher photocatalytic activity for the other two dyes, RR 120 and RB 160. The COD of 50 mg l?1 Reactive Yellow-84, RR 120 and RB 160 was reduced by 65.1, 73.1, and 69.6 %, respectively, upon irradiation of sunlight for 3 h in the presence of N-doped TiO2. The photocatalyst shows low activity for the degradation of RY 84 dye, when its concentration was above 50 mg l?1, due to the strong absorption of photons in the wavelength range 200–400 nm by the dye solution. LC–MS analysis shows the presence of some triazine compounds and formimidamide derivatives in the dye solutions after 3 h solar light irradiation in the presence of N-doped TiO2.  相似文献   

8.
Bare TiO2 and Cu-doped TiO2 nanoparticles with different nominal doping amounts of Cu ranging from of 0.5 to 5.0 mol% were synthesized using the modified sol–gel method. The samples were physically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller-specific surface area, UV–Vis diffuse reflectance spectroscopy, zeta potential, X-ray photoelectron spectroscopy, inductively coupled plasma, and photoluminescence techniques. The Cu-doped TiO2 exhibited good photocatalytic activity in mineralization of oxalic acid and formic acid under visible light irradiation. Photomineralization of oxalic and formic acids under visible light irradiation revealed greatly enhanced photoactivity exhibited by the 2.0 mol% Cu-doped TiO2 photocatalyst compared to bare TiO2 . The enhanced photocatalytic performance arises from copper ion doping in the TiO2 structure, leading to an extended photoresponsive range, enhanced photogenerated charge separation, and transportation efficiency.  相似文献   

9.
The present study explores a new method of synthesis of TiO2 nano-particles in an aqueous medium from TiCl3 precursor by non-thermal plasma in humid air as feeding gas obtained at atmospheric pressure. The precursor solution, TiCl3 is oxidized by strongly reactive species generated by gliding arc plasma (HO· = 2.85 V/SHE) to produce titanium oxide powders. The synthesized powder was characterised by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, nitrogen physisorption, and UV–Vis spectroscopy. The results obtained showed that the material consists of rod-shaped nanoparticles of rutile and anatase phases. The presence of TiO2 phases was confirmed by FTIR spectrum and textural analyses showed that the material is mesoporous with specific surface area of 158 m2 g?1. UV–Visible spectrum of the plasma-synthesized TiO2 sample showed that it absorbs in the UV–A region leading to effective use as a photocatalyst under visible light.  相似文献   

10.
In this study, we successfully prepared pure, mono-doped, and Ag, Mg co-doped TiO2 nanoparticles using the sol–gel method, with titanium tetraisopropoxide as the Ti source. The prepared samples were characterized by X-ray powder diffraction (XRD), specific surface area and porosity (BET and BJH) measurement, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, photoluminescence, and energy dispersive X-ray spectroscopy techniques. The XRD data showed that the prepared nanoparticles had the same crystals structures as the pure TiO2. Also, DRS results indicated that the band gap of co-doped photocatalyst was smaller than that of the monometallic and undoped TiO2 and that there was a shift in the absorption band towards the visible light region. Furthermore, the photocatalytic activity of the prepared catalysts was evaluated by the degradation of C.I. Acid Red 27 in aqueous solution under visible light irradiation. The results showed that Ag (0.08 mol%), Mg (0.2 mol%) co-doped TiO2 had the highest photoactivity among all samples under visible light. It was concluded that co-doping of the Ag and Mg can significantly improve the photocatalytic activity of the prepared photocatalysts, due to the efficient inhibition of the recombination of photogenerated electron–hole pairs. The optimum calcination temperature and time were 450 °C and 3 h, respectively.  相似文献   

11.
The photocatalytic degradation of azo dyes with different structures (amaranth, sunset yellow and tartrazine) using TiO2-Pt nanoparticles (TPt), TiO2-Pt/graphene oxide (TPt-GO) and TiO2-Pt/reduced graphene oxide (TPt-rGO) composites were investigated in the presence of UV and natural sunlight irradiation. The composites were prepared by a combined chemical-thermal method and characterized by Transmission Electron Microscopy (TEM), X-ray powder diffraction (XRD), Infrared (FTIR) and UV–Vis spectroscopy. The modification of TiO2-Pt with graphene oxide shifted its optical absorption edge towards the visible region and increased its photocatalytic activity under UV and natural sunlight irradiation. The efficiency of catalysts on azo dyes degradation (in similar conditions) reached high values (above 99%) under sunlight conditions, proving the remarkable photocatalytic activities of obtained composites. TPt-GO nanocomposite exhibited higher photoactivity than TPt or TPt-rGO, demonstrating degradation efficiencies of 99.56% for amaranth, 99.15% for sunset yellow and 96.23% for tartrazine. The dye photodegradation process follows a pseudo-first-order kinetic with respect to the Langmuir-Hinshelwood reaction mechanism. A direct dependence between azo dyes degradation rate and chemical structure of dyes has been observed.  相似文献   

12.
Novel magnetic chromium and sulfur co-doped TiO2 photocatalysts (M-Cr/S/TiO2) have been prepared by a sol?Cgel process, using magnetic hollow fly ash microspheres as support material. The crystal phase of M-Cr/S/TiO2 was characterized by X-ray diffraction, UV?Cvisible absorption spectroscopy, and transmission electron microscopy. The photocatalytic activity of the photocatalysts was examined by photodegradation of methyl orange in aqueous solution under visible light irradiation. The results showed that chromium and sulfur co-doped catalysts (Cr/S/TiO2) containing 0.60?% (atomic ratio) chromium and 1.2?% (atomic ratio) sulfur calcined at 450?°C for 2?h had high catalytic efficiency under visible irradiation. It is worth mentioning that the floating M-Cr/S/TiO2 catalyst had greater photocatalytic activity than Cr/S/TiO2 powder. Therefore, M-Cr/S/TiO2 is a promising, high-performing, visible-light-driven photocatalyst.  相似文献   

13.
Nanocrystalline Fe-doped TiO2 powders were prepared using TiOSO4, urea, and Fe(NO3)3 · 9H2O as precursors through a hydrothermal method. The as-synthesized yellowish-colored powders are composed of anatase TiO2, identified by X-ray diffraction (XRD). The grain size ranged from 9.7 to 12.1 nm, calculated by Scherrer’s method. The specific surface area ranged from 141 to 170 m2/g, obtained by the Brunauer–Emmett–Teller (BET) method. The transmission electron microscopy (TEM) micrograph of the sample shows that the diameter of the grains is uniformly distributed at about 10 nm, which is consistent with that calculated by Scherrer’s method. Fe3+ and Fe2+ have been detected on the surface of TiO2 powders by X-ray photoelectron spectroscopy (XPS). The UV–Vis diffuse reflection spectra indicate that the light absorption thresholds of the Fe-doped TiO2 powders have been red-shifted into the visible light region. The photocatalytic activity of the Fe-doped TiO2 was evaluated through the degradation of methylene blue (MB) under visible light irradiation. The Fe-doped TiO2 powders have shown good visible-light photocatalytic activities and the maximum degradation ratio is achieved within 4.5 h.  相似文献   

14.
Vanadium doped titanium dioxide (V–TiO2) photocatalyst was synthesized by the sol–gel method using ammonium vanadate as vanadium source. The prepared samples were characterized by XRD, N2 adsorption–desorption method, UV–Vis DRS, Fourier transform infrared (FTIR), scanning electron microscope–energy dispersive X-ray and photoluminescence (PL) analysis. The results show that V5+ ions were successfully incorporated into the crystal lattice of TiO2 as a consequence, not only an obvious decrease in the band gap and a red shift of the absorption threshold into the visible light region was recorded for the V modified TiO2, but, also a decrease in photogenerated electrons and holes recombination rate was observed as demonstrated by PL analysis. FTIR study indicated that in undoped TiO2 sample the acetate group favored a bidentate bridging mode of binding with titanium atoms, whereas a bidentate chelating mode of linkage was observed in V–TiO2 powders. The crystallite size of the samples calcined at 300 and 500 °C were decreased beyond the molar ratio of 200:1 (V:Ti), this may be due to dopant presence in the grain boundaries hindering the crystal growth. The photocatalytic activities for both pure and vanadium doped TiO2 powders were tested in the discoloration of a reactive dyestuff, methylene blue, under visible light. The 100:1 (V:Ti) doped photocatalyst, calcined at 300 °C showed enhanced photocatalytic activity under visible light with a rate constant (kobs) of 5.024 × 10?3 min?1 which is nearly five times higher than that of pure TiO2, as result of low band gap value, high specific surface area and a decrease in recombination rate.  相似文献   

15.
The kinetics of photocatalytic degradation of metobromuron in aqueous solution, with TiO2 as photocatalyst under simulated sunlight irradiation, have been systematically investigated. The single-variable-at-a-time method and the central composite design based on response surface methodology were used to study the individual and synergistic effects of several classical conditions on the efficiency of photocatalysis. Three different conditions, TiO2 concentration, pH, and initial concentration of metobromuron, were found to independently determine the efficiency of degradation. The optimum degradation conditions were: TiO2 concentration 3.00 g/L, pH 7.88, and initial concentration of metobromuron 60.23 μM. In addition, a mechanism of degradation of metobromuron is tentatively proposed on the basis of the experimental results and theoretical calculation of frontier electron densities and point charges. The results suggest that substitution of the Br atom, addition of ·OH radicals, and the cleavage of urea side chain are the predominant degradation pathways during the initial stage of photocatalytic degradation.  相似文献   

16.
The photo-degradation of formaldehyde (HCHO) by nitrogen-doped nanocrystalline TiO2 (N-TiO2) powders under visible light irradiation has been systematically investigated. Experimental results show that the degradation ratio reached up to 42.6% after 2 h visible light irradiation when the amounts of N-TiO2 powders were 0.5 g, the initial concentration of the HCHO was set at 0.98 mg/m3, the illumination intensity was fixed at 10,000 lux, the ambient temperature was set at 26 °C, and the relative humidity was maintained at 33 ± 5%. Further research shows that the degradation ratios were all larger than 40% in ten repeated cycles of photodegradation of HCHO by N-TiO2 powders. The degradation ratio was as high as 82.9% after 2 h visible light irradiation when the amount of N-TiO2 was 5 g. The degradation ratio was increased from 25.5 to 59.6% when the illumination intensity of the visible light was increased from 0 to 30,000 lux. However, the degradation ratio could not be further increased by further increasing the illumination intensity.  相似文献   

17.
TiO2/EDTA-rich carbon composites exhibits excellent photoreduction of Cr(VI) activity via ligand-to-metal charge transfer process.  相似文献   

18.
Amorphous TiO2, synthesized from TiCl4 and diluted NH3 solution, was characterized by X-ray diffraction spectrometry, UV–Vis diffused reflectance spectroscopy, Fourier-transformed infrared spectroscopy, and scanning electron microscopy. The powder exhibited high specific surface area at 508 m2/g as measured by the Brunauer-Emmett-Teller method. The pH at point of zero charge of the as-prepared amorphous TiO2 was determined by the pH drift method to be 6.8. The product was studied for its sorption efficiency using two dyes—crystal violet (CV) and malachite green (MG). Studies on the effects of various sorption parameters (contact time, TiO2 dosage, pH of solution, and initial concentration of dye) were carried out in order to find the optimum adsorption conditions for which the results were: contact time ~30 min, TiO2 dosage ~0.05–0.1 g, pH 7–9, and initial concentration <1 × 10?4 M. The adsorption data were analyzed and fitted better with the Langmuir model than the Freundlich model. The maximum adsorption capacities obtained from the Langmuir model were 0.4979 and 0.4075 mmol dye/g TiO2 for CV and MG dye, respectively. In addition, the regeneration and the recyclability of the prepared amorphous TiO2 were also studied. The used adsorbent should be regenerated 10–12 h before reuse in the next cycle for the best result.  相似文献   

19.
In this work, TiO2 and doped TiO2 photocatalysts (Fe/TiO2 and Cu/TiO2) were synthesized by the sol–gel method. The main objective of this study was to investigate the influence of dopants on the structure, morphology, and activity of the catalysts in powder and immobilized states. XRF, XRD, and SEM methods were used to characterize the catalysts. The structure and phase distribution of the nanocrystalline powders were identified by XRD. Nanoparticles crystallite size and the degree of crystallinity were affected by doping. The anatase contents of catalysts were achieved as follows: TiO2 (5.89 %) < Fe/TiO2 (42.17 %) < Cu/TiO2 (70.28 %). It was indicated that the activity of the catalysts strongly depends on the anatase content. Under the same circumstances, copper-modified TiO2 exhibited a twofold higher photocatalytic activity compared with TiO2. The nanostructured catalysts were immobilized on light expanded clay aggregate (LECA) granules in order to investigate the effect of a novel support on the activity of the catalysts. Morphological changes are recognizable in the SEM images. Activity tests indicated that the best catalytic performance was assigned to Cu/TiO2/LECA. After 120 min of irradiation, 61 % degradation of phenol in synthetic wastewater was achieved. The high photocatalytic activity of Cu/TiO2/LECA confirms that LECA is as an excellent support.  相似文献   

20.
A visible light-driven Bi2O3–TiO2 composite photocatalyst was prepared by an ethylene glycol-assisted sol–gel method in which ethylene glycol acted as a polycondensation agent to capture metal ions by reacting with bismuth and titanium sources via a complex polycondensation pathway. The photocatalyst was characterized by X-ray photoelectron spectroscopy, X-ray diffraction, acquisition of N2 adsorption–desorption isotherms, transmission electron microscopy, and UV–visible diffuse reflectance spectroscopy. The results revealed that the Bi2O3–TiO2 composite was of smaller particle size, greater specific surface area, and had stronger absorbance in the visible light region than pure TiO2. The photocatalytic activity of the as-prepared catalyst was evaluated by degradation of rhodamine B under visible light irradiation (λ > 400 nm); the as-prepared Bi2O3–TiO2 composite was substantially more active than pure TiO2. This was ascribed to the high surface area and the heterojunction structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号