首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe-doped sulfated titania (FST) photocatalysts with high photocatalytic activity were prepared from industrial titanyl sulfate solution and characterized using X-ray diffraction (XRD), thermogravimetry analysis?Cdifferential scanning calorimeter (TGA-DSC), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption?Cdesorption techniques. The photocatalytic activity of the FST photocatalyst was evaluated using the photodegradation of methylene blue (MB) and the photooxidation of phenol in aqueous solutions in the presence of UV irradiation, respectively. The effect of various parameters, such as calcining temperature, calcination time, initial concentration of substrate, amount of catalyst and pH value on the photocatalytic activity of FST photocatalyst was investigated. Among the parameters studied, calcining temperature, initial concentration of substrate, and amount of catalyst have a very similar effect on the activity of FST photocatalyst for both the photodegradation of MB and the photooxidation of phenol, while the others have distinct differences. The optimal calcination conditions were 500?°C, 1.5?h and 650?°C, 2.5?h; the optimal catalyst concentration were 1.0 and 1.2?g?L?1; the optimal pH values were 8 and 4 for the photodegradation of MB and the photooxidation of phenol, respectively. In addition, the mechanism for the high photocatalytic efficiency of FST photocatalyst has also been put forward.  相似文献   

2.
Using industrial titanyl sulfate as a raw material, Fe‐doped sulfated titania (FST) photocatalysts were prepared by using the one‐step thermal hydrolysis method and characterized using XRD, SEM, TGA–DSC, FTIR, UV–Vis DRS and N2 adsorption–desorption techniques. The effects of calcining temperature on the structure of the titania were investigated. The photocatalytic activity of the FST was evaluated using the photodegradation of methylene blue and photooxidation of phenol in aqueous solutions under UV and visible light irradiation, respectively. The results evinced that Ti4+ is substituted by Fe3+ in titania lattice and forms impurity level within the band gap of titania, which consequently induces the visible light absorption and visible‐light‐driven photocatalytic activity. The synergistic effects of Fe‐doping and sulfation are beneficial to the efficient separation of the photogenerated carriers and also improve the quantum efficiency of photocatalysis. In addition, Brönsted acidity arisen from the strong inductive effect of sulfate is also conducive to enhancing the photocatalytic performance of FST. However, when the calcining temperature is higher than 800°C, sulfur species and surface hydroxyl groups decompose and desorb from FST and the specific surface area decreases sharply. Moreover, severe sintering and rutile phase formation occur simultaneously. All these are detrimental to photocatalytic activity of FST.  相似文献   

3.
The interaction of sodium stearate with titania pigment particles from aqueous suspension has been investigated using thermal analysis and infrared spectroscopy combined with electrochemical studies. Thermogravimetric analysis (TGA) was used both to determine the adsorption isotherm and to investigate the interaction behavior. Monolayer coverage is determined to be 0.95 mg/m(2); however, unlike the case with organic solvents, multilayer adsorption occurs. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, combined with TGA, revealed that the surface monolayer is chemically bound. DRIFT spectroscopic data also indicated that the stearate bridged across two aluminum atoms. Subsequent stearate layers were physisorbed to the stearate monolayer and were readily removed with acetone washing.  相似文献   

4.
In this paper, we have developed an accurate and efficient Haar wavelet method to solve film-pore diffusion model. Film-pore diffusion model is widely used to determine study the kinetics of adsorption systems. To the best of our knowledge, until now rigorous wavelet solution has been not reported for solving film-pore diffusion model. The use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, and computationally attractive. The power of the manageable method is confirmed. It is shown that film-pore diffusion model satisfactorily describes the kinetics of methylene blue adsorption onto three low-cost adsorbents, Gauva, teak and gulmohar plant leaf powders, used in this study.  相似文献   

5.
Jute fiber obtained from the stem of a plant was used to prepare activated carbon using phosphoric acid. Feasibility of employing this jute fiber activated carbon (JFC) for the removal of Methylene blue (MB) from aqueous solution was investigated. The adsorption of MB on JFC has found to dependent on contact time, MB concentration and pH. Experimental result follows Langmuir isotherm model and the capacity was found to be 225.64 mg/g. The optimum pH for the MB removal was found to be 5-10. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation, intraparticle diffusion and Elovich equation. Among the kinetic models studied, the intraparticle diffusion was the best applicable model to describe the adsorption of MB onto JFC.  相似文献   

6.
《Comptes Rendus Chimie》2015,18(1):110-120
Studies on the removal of methylene blue (MB) from aqueous solutions by anodic oxidation (AO) using a boron-doped diamond (BDD) electrode, adsorption onto sawdust, and combined treatment have been undertaken. The results proved that AO presents a high efficiency in removing both color and COD in a wide pH interval. The total mineralization of the dye solution was performed in 6 h, which corresponds to relatively high-energy consumption. On the other hand, high sawdust dosage (12 g·L−1) was needed to ensure 98% of color and 81% of COD removal. Combining AO and adsorption onto sawdust constitute a very interesting technology. For instance, AO for 1 h followed by sorption permits a reduction in energy consumption by 80 W·h·gCOD−1, a reduction of more than 24 times the adsorbent dose and an enhancement of color and COD removal, indicating that sawdust is efficient in removing not only the MB initial molecules but also the electrogenerated by-products.  相似文献   

7.
The adsorption behavior of Ni(II) onto bentonite was studied as a function of temperature under optimized conditions of shaking time, amount of adsorbent, pH, and concentration of the adsorbate. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° were calculated from the slope and intercept of the linear plot of lgKD against 1/T. Analysis of adsorption results obtained at T=(298, 303, 313, and 323) K showed that the adsorption pattern on bentonite followed the Langmuir, Freundlich, and D-R isotherms. A flame atomic absorption spectrophotometer was used for measuring the concentration of Ni(II).  相似文献   

8.
Steam-activated carbons DS2 and DS5 were prepared by gasifying 600 °C-date pits carbonization products with steam at 950 °C to burn-off = 20 and 50%, respectively. The textural properties of these carbons were determined from the nitrogen adsorption at ?196 °C. The chemistry of the carbon surface was determined from the surface pH and from neutralization of the surface carbon–oxygen groups of basic and acidic type. The kinetic and equilibrium adsorption of MB and RY on DS2 and DS5 was determined at 27 and 37 °C and at initial sorption solution pH 3–7.DS2 and DS5 have expanded surface area, large total pore volume and contain both micro and mesoporosity. They have on their surface basic and acidic groups of different strength and functionality. This enhanced the sorption of the cationic dye (MB) and of the anionic dye (RY). The adsorption of MB and RY on DS2 and DS5 involves intraparticle diffusion and followed pseudo-second order kinetics. The adsorption isotherms were applicable to the Langmuir isotherm and high monolayer capacities for MB and RY dyes were evaluated indicating the high efficiencies of the carbons for dye adsorption.  相似文献   

9.
Summary The present experiments were undertaken to establish the mechanism of methylene blue dye adsorption from aqueous solution on common siliceous minerals found in petroleum reservoir formations. Three minerals (a montmorillonite, a kaolinite, and a silica-sand flour) were prepared so that all thecec sites on the mineral surfaces were occupied by sodium (23Na +22Na). Methylene blue (Cl) dye adsorption isotherms were measured on these three minerals prepared in the sodium form. Measurement of the transmittance of the equilibrium solutions and measurement of the gamma-counting activity (22Na) of the equilibrium solutions permitted a quantitative determination of dye cation adsorption and of sodium cation displacement.In the case of the clays (montmorillonite and kaolinite) the saturation dye adsorption capacity must be attributed to two mechanisms: first, to cation exchange resulting from isomorphous substitution in the alumino-silicate lattice and, second, to an adsorption mechanism which might be either physical (van der Waals) adsorption or chemisorption (hydrogen bonding) with the surface SiOH and AlOH of the aluminosilicate lattice.Dye adsorption on silica is due to the physical or chemisorption mechanisms alone. It was demonstrated that the distribution of this type of adsorption site on the two clays after correction for the distribution of thecec sites ranged from 4.9 to 6.1×10–8 me/cm2 and was in good agreement with the value 5.1×10–8 me/cm2 for the total adsorption sites on silica.In spite of the existence of mechanisms other than cation exchange, methylene blue dye adsorption can nonetheless be used as a rapid, approximate method for estimation ofcec of siliceous sediments owing to the fortuitous circumstance that in a saturated monomolecular layer of dye adsorbate the effective coverage area of the dye molecule approximates the area available per exchange site on the common clay minerals, e. g., montmorillonite and kaolinite.
Zusammenfassung Die beschriebenen Untersuchungen wurden durchgeführt, um den Mechanismus der Adsorption von Methylenblau aus wäßriger Lösung an bekannten Silikaten, wie sie in erdölführenden Schichten gefunden werden, aufzuklären. Drei Minerale, ein Montmorillonit, ein Kaolinit und ein mehliger Silicium-Sand, wurden so behandelt, daß alle Kation-Austauschstellen (Cation Exchange Capacity) auf den Oberflächen des Minerales von Natrium besetzt waren (23Na +22Na). Isothermen der Adsorption des Farbstoffes Methylenblau-Chlorid wurden an den Natrium-Formen dieser Minerale aufgenommen. Die Messung der Lichtdurchlässigkeit der Lösung im Gleichgewicht und die Messung der Gamma-Aktivität (22Na) dieser Gleichgewichtslösung erlaubten es, quantitativ die Adsorption von Farbstoff-Kation und den Ersatz von Natrium-Kation festzustellen.Im Falle der Tone, Montmorillonit und Kaolinit, muß die Sättigungsfähigkeit der Farbstoffadsorption zwei Mechanismen zugeschrieben werden: in erster Linie dem Kationenaustausch, der sich aus der isomorphen Substitution im Gitter des Aluminiumsilikates herleitet, in zweiter Linie einem Adsorptionsmechanismus, der entweder aus physikalischer Adsorption (van der Waals) oder Chemisorption (Wasserstoffbindung) mit den Oberflächengruppen SiOH und AlOH des Aluminosilikatgitters besteht.Farbstoffadsorption an Siliciumdioxid kann nur der physikalischen oder der aktivierten Adsorption zugeschrieben werden. Es wurde gezeigt, daß die Verteilung dieser Art von Adsorptionsstellen an den beiden Tonen von 4,9–6,1×10–8 Milliäquivalenten pro cm2 reichte (nach Korrekturen für die Verteilung der Kationen-Austauschstellen). Das stimmt sehr gut mit dem Wert 5,1×10–8 Milliäquivalenten pro cm2 für alle Adsorptionsstellen an Siliciumdioxid überein.Obwohl es einen anderen Mechanismus als den Kationenaustausch gibt, kann doch die Adsorption von Methylenblau als schnelle Feldmethode dazu dienen, die Kationen-Austauschstellen (cec) von Silikatsedimenten abzuschätzen. Und zwar, einmolekulare Bedeckung mit adsorbiertem Farbstoff vorausgesetzt, weil die vom Farbstoffmolekül effektiv bedeckte Fläche der zugänglichen Fläche pro Austauschstelle entspricht; jedenfalls bei gewöhnlichen Tonmineralen wie Montmorillonit und Kaolinit.


Publication No. 358, Exploration and Production Research Laboratory, Shell Development Company (a Division of the Shell Oil Company), Houston, Texas.  相似文献   

10.
Water pollutant such as dyes had danger the water quality. Todays, porous materials are great potential for dye adsorption from water bodies. In this study, the iron-based metal–organic framework (MOF-Fe) of MIL-101 is synthesized through a facile solvothermal method. The amine-functionalization effect of the MOF-Fe (amine-MOF-Fe) is evaluated for the adsorptive removal of methylene blue (MB) from aqueous solution. The adsorption behaviour had shown a rapid MB adsorption within the first hour of the process due to the pore-filling mechanism of the porous MOF-Fe structure. The electrostatic interaction between the amino group of amine-MOF-Fe and MB had contributed to the high adsorption capacity. The amine-functionalization effect also found the amine-MOF-Fe is having two times higher adsorption capacity when used with the loading two times lower than non-functionalized MOF-Fe. The maximum equilibrium adsorption capacities were measured at 149.25 and 312.5 mg/g with optimum MOFs loading of 0.8 and 0.4 g/L for MOF-Fe and amine-MOF-Fe, respectively. The adsorption mechanism proposed includes the electrostatic interaction, pore filling, hydrogen bonding, and π–π stacking. The regeneration study showed the MOFs could be recycled without interfering with the removal efficiency. Hence, the results indicate that the MOFs had desirable reusability for the practical adsorption of cationic dyes with its features of fast adsorption and high capacity.  相似文献   

11.
Sun LX  Matsuda N  Takatsu A  Kato K  Okada T 《Talanta》2005,65(5):1143-1148
A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid–solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. Effect of pH on adsorption on MB and NMB was investigated. Binding rate constant analysis showed that both MB and NMB on bare SOWG demonstrates larger association constants than those on ODS-SOWG. Interactions of MB and NMB on bare SOWG and ODS-SOWG were analyzed by molecular mechanics calculation method. The binding energy change was in the following order: ENMB–bare > EMB–bare > ENMB–ODS > EMB–ODS.  相似文献   

12.
以粮食副产物——稻壳为原料,采用化学活化法制成了微介孔共存的孔隙发达的稻壳基活性炭,此稻壳基活性炭对亚甲基蓝的吸附量可以达到464.8 mg·g-1。通过大量亚甲基蓝吸附实验结果拟合,发现其吸附平衡过程符合Freundlich吸附模型,动力学模型符合准二级吸附动力学模型。通过吸附平衡模型与动力学模型的建立,为此活性炭的实际应用提供理论预测模板。  相似文献   

13.
Calorimetric measurements of the enthalpy of adsorption on montmorillonite indicate different patterns for methylene blue (MB) and crystal violet (CV). The enthalpy of adsorption of MB is endothermic up to 73% of the cation exchange capacity (CEC) (i.e., about 0.6 mmol g-1 clay), whereas at higher adsorption ratios the adsorption reaction becomes exothermic. The enthalpy of adsorption of CV is exothermic for all amounts adsorbed. These results were confirmed with adsorption experiments that prove that adsorption of MB increase with temperature, whereas CV adsorption decreases. This behavior indicates changes in the equilibrium coefficient according to Van't Hoff's equation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
用简单可行的方法合成了功能化的石墨烯(GNSPF6)和磁铁掺杂的还原氧化石墨烯(RGO-Fe3O4),并进一步研究了pH值、接触的时间和温度对它们吸附亚甲基蓝(MB)的影响.结果表明,随着pH值和温度的增加其吸附量也随之变大,从而说明该吸附过程是自发吸热的.因为GNSPF6的吸附过程只用了不到20min的时间,所以它的吸附是高效的.用经典的准一级反应、准二级反应和粒内扩散模型对其吸附过程进行动态分析,从结果可以发现,准二级动力学模型比准一级动力学模型更适用于描述吸附过程.采用传统的Langmuir,Freundlich和L-F吸附等温线模型来模拟分析数据,在20℃时,由Langmuir吸附等温线模型模拟分析得知GNSPF6和RGO-Fe3O4对MB的最大吸附量分别为374.4和118.4mg/g.  相似文献   

15.
In this work, mesostructured silica nanoparticles (MSN(AP)) with high adsorptivity were prepared by a modification with 3-aminopropyl triethoxysilane (APTES) as a pore expander. The performance of the MSN(AP) was tested by the adsorption of MB in a batch system under varying pH (2-11), adsorbent dosage (0.1-0.5gL(-1)), and initial MB concentration (5-60mgL(-1)). The best conditions were achieved at pH 7 when using 0.1gL(-1) MSN(AP) and 60mgL(-1)MB to give a maximum monolayer adsorption capacity of 500.1mgg(-1) at 303K. The equilibrium data were evaluated using the Langmuir, Freundlich, Temkin, and Harkins-Jura isotherms and fit well to the Freundlich isotherm model. The adsorption kinetics was best described by the pseudo-second order model. The results indicate the potential for a new use of mesostructured materials as an effective adsorbent for MB.  相似文献   

16.
Adsorption of cationic methylene blue and anionic orange II onto unmodified and surfactant-modified zeolites was studied using a batch equilibration method. The effects of equilibrium time, solution pH, and sorption temperature were examined. The results suggested that 2% sodium dodecyl benzenesulfonate (SDBS)- and 3% sodium dodecyl sulfate (SDS)-modified zeolites had higher adsorption capacities for methylene blue than the unmodified zeolite, while 2% cetylpyridinium bromide hexadecyl (CPB)- and 2% hexadecylammonium bromide (HDTMA)-modified zeolites were the best adsorbents for orange II. The adsorption conditions were optimized, and the mechanisms of adsorption are briefly discussed.  相似文献   

17.
Titanate nanotubes were synthesized with hydrothermal reaction using TiO(2) and NaOH as the precursors and subsequent calcination at 400°C for 2h. The products were characterized with SEM and XRD. Adsorption and photocatalysis of methylene blue over titanate nanotubes and TiO(2) were investigated. The results indicated that titanate nanotubes exhibited a better photocatalytic degradation of methylene blue in a simultaneous adsorption and photodegradation system than that in equilibrium adsorption followed by a photodegradation system, whereas TiO(2) showed no significant differences in photocatalytic activity in the two systems. The methylene blue overall removal efficiency over TNTs in the first system even exceeded that over TiO(2). The different catalytic performances of titanate nanotubes in the two systems were tentatively attributed to different effects of adsorption of methylene blue, i.e., the promoting effect in the former and the inhibition effect in the latter. Decantation experiments showed that the titanate nanotube photocatalyst could be easily separated from the reaction medium by sedimentation. Thus titanate nanotubes with high sedimentation rates and concurrent adsorption represent a new catalyst system with a strong potential for commercial applications.  相似文献   

18.
Batch sorption experiments were carried out to remove methylene blue from its aqueous solutions using fly ash as an adsorbent. Operating variables studied were initial dye concentration, fly ash mass, pH, and contact time. Maximum color removal was observed at a basic pH of 8. Equilibrium data were represented well by a Langmuir isotherm equation with a monolayer sorption capacity of 5.718 mg/g. Sorption data were fitted to both Lagergren first-order and pseudo-second-order kinetic models and the data were found to follow pseudo-second-order kinetics. Rate constants at different initial concentrations were estimated. The process mechanism was found to be complex, consisting of both surface adsorption and pore diffusion. The effective diffusion parameter D(i) values were estimated at different initial concentrations and the average value was determined to be 2.063 x 10(-9)cm2/s. Analysis of sorption data using a Boyd plot confirms the particle diffusion as the rate-limiting step for the dye concentration ranges studied in the present investigation (20 to 60 mg/L).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号