首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
两亲性三嵌段共聚物PAA-PHB-PAA的合成及表征   总被引:1,自引:0,他引:1  
本文用ATRP方法, 以两端溴化的聚β-羟基丁酸酯链段(Br-PHB-Br)作为大分子引发剂, 丙烯酸叔丁酯为单体, 合成了一种新的三嵌段共聚物聚丙烯酸叔丁酯-聚β-羟基丁酸酯-聚丙烯酸叔丁酯(PtBA-PHB-PtBA). 在酸性条件下进一步水解, 得到了一种两亲性的聚丙烯酸-聚β-羟基丁酸酯-聚丙烯酸(PAA-PHB-PAA)三嵌段共聚物.  相似文献   

2.
以氯化亚铜/N,N,N′,N″,N″-五甲基二乙撑三胺为催化体系、丁酮和异丙醇为混合溶剂,采用原子转移自由基聚合法制备了大分子引发剂聚丙烯酸叔丁酯(PtBA-Cl)和聚丙烯酸叔丁酯-b-聚(N-异丙基丙烯酰胺)(PtBA-b-PNIPAM)两亲性嵌段共聚物.用红外光谱和核磁共振谱表征 PtBA-b-PNIPAM 嵌段共聚物的结构,动态光散射及透射电镜研究嵌段共聚物在溶液中的温度响应性.结果表明:胶束的体积相转变温度在 33℃左右;随着温度的增加,胶柬的粒径逐渐减小.  相似文献   

3.
张普玉  刘洋  彭李超  郭有钢 《化学学报》2009,67(14):1663-1667
利用原子转移自由基聚合法(ATRP)合成了分子量可控、分子量分布窄的嵌段共聚物聚苯乙烯-b-聚丙烯酸叔丁酯(PSt-b-PtBA), 进而在酸性条件下由水解反应得到了两亲性嵌段共聚物聚苯乙烯-b-聚丙烯酸(PSt-b-PAA), 并通过凝胶渗透色谱(GPC)、傅立叶变换红外光谱(FTIR)、核磁共振(1H NMR)等测试手段对产物进行了表征. 使三种分子量不同的两亲性嵌段共聚物在离子液体1-丁基-3-甲基咪唑六氟磷酸盐([BMIM][PF6])中进行自组装, 通过激光粒度分析仪(DLS)和透射电子显微镜(TEM)研究了聚合物在离子液体中自组装的胶束尺寸和结构形态. 当PSt的链段长度一定时, 胶束的形状主要依赖于PAA链的长度. 当PAA链段较长时, 胶束呈球形; 当PAA链段较短时, 则变成不规则的花生状胶束.  相似文献   

4.
刘新  孙仪琳  李坚  任强  汪称意 《高分子学报》2016,(11):1529-1537
采用电子转移再生催化剂原子转移自由基聚合(ARGET ATRP)制备了端羟基聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯嵌段共聚物(HO-PBA-b-PMMA),在此基础上,与六亚甲基二异氰酸酯三聚体(N3390)反应,合成了多臂聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯嵌段共聚物.通过凝胶渗透色谱(GPC)、核磁共振仪(1H-NMR)、傅里叶变换红外光谱计(FTIR)对聚合物的结构进行了表征,利用原子力显微镜(AFM)观察了其形貌,采用动态热机械分析仪(DMA)和万能拉伸机研究了聚合物的热性能、力学性能及多臂嵌段共聚物对PMMA的增韧性能.结果表明:成功制备了端羟基聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯,以及多臂聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯嵌段共聚物.在异氰酸酯基/羟基(NCO/OH)摩尔比为1.2/1时,制得的多臂嵌段共聚物相对分子质量最大,Mark-Houwink参数α值最小,表明此时三臂嵌段共聚物最多.多臂嵌段聚合物的拉伸强度和断裂伸长率比线型聚合物均有明显提高,且在NCO/OH摩尔比为1.2/1时达到最大,分别为7.6 MPa和73%.多臂嵌段聚合物具有更高的玻璃化转变温度(Tg).通过原子力显微镜(AFM)表明,多臂聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯嵌段共聚物形成了以聚丙烯酸丁酯链段为核,聚甲基丙烯酸甲酯为壳的核壳结构.具有核壳结构的多臂聚丙烯酸丁酯-b-聚甲基丙烯酸甲酯嵌段共聚物对聚甲基丙烯酸甲酯有明显的增韧作用.  相似文献   

5.
两亲性嵌段共聚物PS-b-PMAA的合成与胶束化行为研究   总被引:7,自引:2,他引:5  
华慢  杨伟  薛乔  陈明清  刘晓亚  杨成 《化学学报》2005,63(7):631-636
利用原子转移自由基聚合法(ATRP)得到了分子量可控、分子量分布接近1.1的聚苯乙烯-b-聚甲基丙烯酸叔丁酯(PS-b-PtBMA)嵌段共聚物, 进而在酸性条件下由水解反应得到了两亲性的聚苯乙烯-b-聚甲基丙烯酸 (PS-b-PMAA)嵌段共聚物.用GPC, FTIR和1H-NMR等对产物的分子量和组成进行了表征.使PS-b-PMAA在选择性溶剂中进行自组装, 通过激光光散射和透射电子显微镜研究了影响其胶束化行为的因素与胶束形态, 并初步探讨了胶束形成的机理, 发现通过控制嵌段共聚物的链段长度之比可得到空心球形的高分子胶束.  相似文献   

6.
以2-溴代异丁酸乙酯为引发剂,Cu Br/PMDETA为催化体系,通过原子转移自由基聚合(ATRP)方法,合成了寡聚乙二醇甲基丙烯酸酯与丙烯酸叔丁酯的嵌段共聚物(PMEO2MA-b-Pt BA);通过水解脱去共聚物中丙烯酸叔丁酯嵌段上的叔丁基,使丙烯酸叔丁酯嵌段转化为丙烯酸嵌段,得到寡聚乙二醇甲基丙烯酸酯与丙烯酸的嵌段共聚物(PMEO2MA-b-PAA).通过溶液透光率和动态光散射(DLS)等方法,表征了合成得到的嵌段共聚物的温敏性能和p H响应性,发现嵌段共聚物在24~30℃,p H=4~8的范围内发生亲水性性质转变.以二环己基碳二亚胺(DCC)为缩合剂,在4-二甲氨基吡啶(DMAP)的催化下使PMEO2MA-b-PAA上的羧基与蚕丝上的氨基发生缩合反应,从而令共聚物接枝到蚕丝上,通过接触角和回潮率的测试发现改性后的蚕丝在28~42℃具温敏性,较共聚物的转变温度有所升高,其转变温度随p H的增大而上升.  相似文献   

7.
以α-溴乙苯为引发剂,溴化亚铜为催化剂,2,2'-联吡啶为配体,用原子转移自由基聚合(ATRP)法合成了结构一定的嵌段共聚物聚苯乙烯-b-聚丙烯酸丁酯(PSt-b-PBA).经水解制备了双亲性嵌段共聚物聚苯乙烯-b-聚丙烯酸(PSt-b-PAA);采用单溶剂溶解法配制了PSt-b-PAA在甲苯中的反胶束溶液;以极性荧光化合物N-1-萘乙二胺盐酸盐(NEAH)为极性微区探针,用荧光光谱法并配合透射电镜观察探索了双亲嵌段共聚物PSt-b-PAA在甲苯溶液中的自聚集行为,考察了双亲性嵌段共聚物浓度、链结构及温度等因素对反胶束化行为的影响规律.结果表明,亲水链PAA短而亲油链PSt长的双亲嵌段共聚物PSt-b-PAA,用单溶剂溶解法可使其在甲苯中发生自聚集,形成以亲水段为核,疏水段为壳的星状反胶束结构;反胶束为10-20nm的球形聚集态结构;PSt-b-PAA的自聚集行为及临界胶束浓度与分子链的微结构和温度等因素相关,且随着共聚物浓度的增大,小胶束会逐渐结合形成大的纺垂状聚集体.  相似文献   

8.
本文采用原子转移自由基聚合方法合成了聚丙烯酸叔丁酯-聚丙烯腈嵌段共聚物(PtBA-b-PAN),酸解得到聚丙烯酸-聚丙烯腈两亲嵌段共聚物(PAA-b-PAN).随后,PAA-b-PAN嵌段共聚物在水溶液中自组装形成以PAA为壳,PAN为核的胶束.用此胶束为模板,加入FeCl3溶液后得到了壳层负载Fe3+的聚合物纳米粒子,经230℃空气中预氧化,600℃氮气氛煅烧,得到了核壳结构的,具有磁性的碳纳米粒子.用1HNMR,IR,GPC,TGA,TEM,XRD,AGM等技术对嵌段共聚物及纳米粒子进行了表征,结果表明纳米粒子的壳层含γ-Fe2O3,Fe2.5C混合物,核含碳,直径为35±5nm,饱和磁化强度为2.16emu/g.在分离、吸波和传感器等方面具有潜在的应用前景.  相似文献   

9.
通过原子转移自由基(ATRP)方法合成了其中一个嵌段是由2种单体无规共聚的两嵌段聚合物——聚丙烯酸肉桂酸乙酯-b-(聚苯乙烯-r-聚丙烯酸叔丁酯),(记为PCEA-b-(PtBA-r-PS)).讨论了聚合过程中影响分子量分布以及分子量控制的各种因素.通过氢核磁(1H-NMR)确定各嵌段的重复单元数分别为50,111,138.通过透射电镜(TEM)观察,研究了该嵌段聚合物在选择性溶剂1-氯癸烷以及环戊烷中的自组装行为,发现该嵌段聚合物在环己烷中直接分散可以形成有聚集倾向的短棒状或球形胶束,而在1-氯癸烷中直接分散得到的胶束,在膜表面随着1-氯癸烷溶剂的缓慢挥发可以组装得到具有规则微纳结构的相互连接的柱状胶束.  相似文献   

10.
通过原子转移自由基聚合方法, 在丁酮/异丙醇混合溶剂中合成了分子量可控和分布较窄的聚丙烯酸叔丁酯-b-聚N-异丙基丙烯酰胺(PtBA-b-PNIPAM)嵌段共聚物, 用GPC和 1 H NMR对其结构进行了表征. PtBA-b-PNIPAM在甲苯中水解得到聚丙烯酸-b-聚N-异丙基丙烯酰胺(PAA-b-PNIPAM). 用动态光散射技术对PAA-b-PNIPAM在水溶液中的自组装行为随pH值和温度变化的响应进行了初步研究.  相似文献   

11.
Well-defined amphiphilic seven-arm star triblock copolymers containing hydrophobic crystalline poly(ε-caprolactone)(PCL) blocks, hydrophobic non-crystalline poly(tert-butyl acrylate)(PtBA) blocks and hydrophilic poly(ethylene glycol)(PEG) blocks were precisely synthesized by a combination of ring-opening polymerization(ROP), atom transfer radical polymerization(ATRP) and “click” reaction. Such star copolymers could self-assemble into “core-shell-corona” micelles and “multi-layer” vesicles depending on the fraction of each block. Meanwhile, the selective hydrolysis of middle PtBA blocks into the poly(acrylic acid)(PAA) blocks allowed the star block copolymers to further change their morphologies of aqueous aggregates in response to pH values.  相似文献   

12.
以聚甲基丙烯酸[2-(2-溴异丁酰氧)]乙酯(PBIEM)为大分子引发剂,采用接出(grafting from)原子转移自由基聚合(ATRP)技术合成了以聚丙烯酸叔丁酯-b-聚含氟丙烯酸酯为侧链的柱状分子刷PBIEM-g-(PtBA-b-PFA).通过GPC,1H-NMR和FTIR对PBIEM-g-(PtBA-b-PFA)组成和结构进行了表征,证实ATRP过程中没有发生分子间或分子内偶合反应,制备得到可控性好的含氟嵌段共聚物刷.利用大分子链中叔丁酯基团的水解反应生成两亲的含氟柱状刷PBIEM-g-(PAA-b-PFA),原子力显微镜可直接观察到PBIEM-g-(PAA-b-PFA)特征的核壳型柱状结构,得到聚合物刷的整体长度为ln=54~72 nm.  相似文献   

13.
Low molar mass (∼ 4000) di- and triblock copolymers of styrene and tert-butyl acrylate were synthesized by atom transfer radical polymerization (ATRP) in bulk and solution conditions. A CuBr/N, N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) catalyst system in conjunction with an alkyl-halide initiator were used to control the synthesis of the polystyrene macroinitiator and the subsequent copolymerization with tert-butyl acrylate. Hydrolysis of the tert-butyl acrylate blocks to acrylic acid blocks in the presence of trifluoroacetic acid resulted in the formation of an amphiphilic block copolymer. Size exclusion chromatography (SEC) and matrix assisted laser desorption ionization - time of flight - mass spectrometry (MALDI-TOF-MS) were used to determine the molar mass and molar mass distribution of the polystyrene macroinitiators and the block copolymers. 1H NMR was used to characterize the polystyrene macroinitiators and the block copolymers, and to confirm hydrolysis of the poly(tert-butyl acrylate) blocks to poly(acrylic acid).  相似文献   

14.
程金华  姜鸿基 《应用化学》2019,36(4):440-450
以四苯乙烯类分子2-溴-2-甲基-丙酸-3-(4-三苯乙烯基-苯氧基)-丙醇酯(E)作为引发剂,N-异丙基丙烯酰胺和苯乙烯为原料,通过活性自由基聚合,合成了末端具有聚集诱导发光(AIE)活性发光体的双亲性嵌段聚合物G。 详细研究了AIE活性引发剂E和嵌段聚合物G在不同状态下的光物理行为差异。结果表明,在相同浓度条件下,随着温度的升高,引发剂E分散液的荧光强度不断下降。 而嵌段聚合物的荧光强度先上升,当温度超过37 ℃后,嵌段聚合物的荧光强度不断下降。 同样地,通过改变引发剂E和嵌段聚合物G在四氢呋喃和水混合溶剂中的浓度发现,随着浓度的减小,引发剂E的荧光强度不断下降,而嵌段聚合物分散液在改变分散液浓度时荧光强度的变化规律和改变温度时荧光强度的变化趋势相似。 通过监控双亲性嵌段聚合物末端挂接的AIE活性发光分子发光性质的变化可以间接表征其聚集态结构的变化。  相似文献   

15.
Greene AC  Zhu J  Pochan DJ  Jia X  Kiick KL 《Macromolecules》2011,44(7):1942-1951
In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by (1)H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)(9)), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)(9) (M(n) = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)(9) was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10(-4) mg/mL. The (PAA-PS)(9) multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules.  相似文献   

16.
Well-defined star polymers containing a functionalized core supply a molecular nanocavity and may be used to control formation of inorganic nanoparticles. Herein, platinum (Pt) nanoparticles of 2-4 nm were prepared by using (poly(acrylic acid)-b-polystyrene)6 (PAA-b-PS)6 amphiphilic star block copolymer as a novel single molecular stabilizer. This PAA core functionalized star polymer was obtained by hydrolysis of (poly(tert-butyl acrylate)-b-polystyrene)6 (PtBA-b-PS)6, which was synthesized by sequential atom transfer radical polymerization (ATRP) of tert-butyl acrylate and styrene with an initiator bearing six 2-bromoisobutyloxyl groups. Pt(IV) ions were loaded by ion exchange to the core of the star polymer and Pt nanoparticle stabilized by single star polymer was produced by a reduction with NaBH4.  相似文献   

17.
Poly(acrylic acid-b-styrene) (PAA-b-PS) amphiphilic block copolymers were synthesized by consecutive telomerization of tert-butyl acrylate, atom transfer radical polymerization (ATRP) of styrene, and hydrolysis. The resulting block copolymers were characterized by 1H NMR and GPC. These amphiphilic block copolymeric micelles were prepared by dialysis against water. Transmission electron micrograph (TEM) and laser particle sizer measurements were used to determine the morphology and size of these micelles. The results showed that these amphiphilic block copolymers formed spherical micelles with average size of 140–190?nm. The critical micelle concentration (CMC) and the kinetic stability of these micelles were investigated by fluorescence technique, using pyrene as a fluorescence probe. The observed CMC value was in the range of 0.075–0.351?mg/L. Kinetic stability studies showed that the stability of micelles increased with the decrease of the pH value of the solution.  相似文献   

18.
Amphiphilic star-block copolymers composed of polystyrene and poly(acrylic acid)were synthesized by iodide- mediated radical polymerization.Firstly,free radical polymerization of styrene was carried out with AIBN as initiator and 1,1,1-trimethyolpropane tri(2-iodoisobutyrate)as chain transfer agent,giving iodine atom ended star-shaped polystyrene with three arm chains,R(polystyrene)_3.Secondly,tert-butyl acrylate was polymerization using polystyrene obtained as macro-chain transfer agent,and star-block copolymer,R(polystyrene-b-poly(tert-butyl acrylate))_3 with controlled molecular weight was obtained.Finally,amphiphilic star-block copolymer,R(polystyrene-b-poly(acrylic acid))_3 was obtained by hydrolysis of R(polystyrene-b-poly(tert-butyl acrylate))_3 under acidic condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号