首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, author studied homogeneous and anisotropic Bianchi type-V universe filled with matter and holographic dark energy (DE) components. The exact solutions to the corresponding Einstein’s field equations are obtained for exponential and power-law volumetric expansion. The holographic dark energy (DE) EoS parameter behaves like constant, i.e. ω Λ =?1, which is mathematically equivalent to cosmological constant (Λ) for exponential expansion of the model, whereas the holographic dark energy (DE) EoS parameter behaves like quintessence for power-law expansion of the model. A correspondence between the holographic dark energy (DE) models with the quintessence dark energy (DE) is also established. Quintessence potential and dynamics of the quintessence scalar field are reconstructed, which describe accelerated expansion of the universe. The statefinder diagnostic pair {r,s} is adopted to characterize different phases of the universe.  相似文献   

2.
This paper is devoted to study the modified holographic dark energy model by taking its different aspects in the flat Kaluza-Klein universe.We construct the equation of state parameter which evolutes the universe from quintessence region towards the vacuum.It is found that the modified holographic model exhibits instability against small perturbations in the early epoch of the universe but becomes stable in the later times.We also develop its correspondence with some scalar field dark energy models.It is interesting to mention here that all the results are consistent with the present observations.  相似文献   

3.
This paper is devoted to study the modified holographic dark energy model by taking its different aspects in the flat Kaluza-Klein universe. We construct the equation of state parameter which evolutes the universe from quintessence region towards the vacuum. It is found that the modified holographic model exhibits instability against small perturbations in the early epoch of the universe but becomes stable in the later times. We also develop its correspondence with some scalar field dark energy models. It is interesting to mention here that all the results are consistent with the present observations.  相似文献   

4.
In the paper, we apply the weak gravity conjecture to the holographic quintessence model of dark energy. Three different holographic dark energy models are considered: without the interaction in the non-flat universe; with interaction in the flat universe; with interaction in the non-flat universe. We find that
only in the models with the spatial curvature and interaction term proportional to the energy density of matter, it is possible for the weak gravity conjecture to be satisfied. And it seems that the weak gravity conjecture favors an open universe and the decaying of matter into dark energy.  相似文献   

5.
Introducing a new infrared cut-off for the holographic dark-energy, we study the correspondence between the quintessence, tachyon, K-essence and dilaton energy density with this holographic dark energy density in the flat FRW universe. This correspondence allows to reconstruct the potentials and the dynamics for the scalar fields models, which describe accelerated expansion.  相似文献   

6.
In this paper we consider quintessence reconstruction of interacting holographic dark energy in a non-fiat background. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as L = at(t). To this end we construct a quintessence model by a real, single scalar field. Evolution of the potential, V(φ), as well as the dynamics of the scalar field, φ, is obtained according to the respective holographic dark energy. The reconstructed potentials show a cosmological constant behavior for the present time. We constrain the model parameters in a fiat universe by using the observational data, and applying the Monte Carlo Markov chain simulation. We obtain the best fit values of the holographic dark energy model and the interacting parameters as c=1.0576-0.6632-0.6632^+0.3010+0.3052 and ζ =0.2433-0.2251-.2251^+0.6373+0.6373 , respectively. From the data fitting results we also find that the model can cross the phantom line in the present universe where the best fit value of the dark energy equation of state is WD=-1.2429.  相似文献   

7.
This paper is devoted to study some holographic dark energy models in the context of Chern-Simon modified gravity by considering FRW universe. We analyze the equation of state parameter using Granda and Oliveros infrared cut-off proposal which describes the accelerated expansion of the universe under the restrictions on the parameter α. It is shown that for the accelerated expansion phase \( -1<\omega _{\Lambda }<-\frac {1}{3}\), the parameter α varies according as \(1<\alpha <\frac {3}{2}\). Furthermore, for 0<α<1, the holographic energy and pressure density illustrates phantom-like theory of the evolution when ωΛ<?1. Also, we discuss the correspondence between the quintessence, K-essence, tachyon and dilaton field models and holographic dark energy models on similar fashion. To discuss the accelerated expansion of the universe, we explore the potential and the dynamics of quintessence, K-essence, tachyon and dilaton field models.  相似文献   

8.
In this paper, we study interacting extended Chaplygin gas as dark matter and quintessence scalar field as dark energy with an effective Λ-term in Lyra manifold. As we know Chaplygin gas behaves as dark matter at the early universe while cosmological constant at the late time. Modified field equations are given and motivation of the phenomenological models discussed in details. Four different models based on the interaction term are investigated in this work. Then, we consider other models where Extended Chaplygin gas and quintessence field play role of dark matter and dark energy respectively with two different forms of interaction between the extended Chaplygin gas and quintessence scalar field for both constant and varying Λ. Concerning to the mathematical hardness of the problems we discuss results numerically and graphically. Obtained results give us hope that proposed models can work as good models for the early universe with later stage of evolution containing accelerated expansion.  相似文献   

9.
This paper is devoted to studing the accelerated expansion of the universe in context of f(T) theory of gravity. For this purpose, we construct different f(T) models and investigate their cosmological behavior through equation of state parameter by using holographic, new agegraphic and their power-law entropy corrected dark energy models. We discuss the graphical behavior of this parameter versus redshif~ for particular values of constant parameters in Bianchi type I universe model. It is shown that the universe lies in different forms of dark energy, namely quintessence, phantom, and quintom corresponding to the chosen scale factors, which depend upon the constant parameters of the models.  相似文献   

10.
We consider a spatially homogeneous and totally anisotropic Bianchi-I space-time with perfect fluid (dark matter and standard visible matter) and anisotropic dark energy, which has dynamical energy density. The two sources are assumed to interact minimally and therefore their energy momentum tensors are conserved separately. Using suitable physical assumptions, the field equations are solved exactly. Various dark energy models are studied and it is found that quintessence model is suitable for describing the present evolution of the universe. The geometrical and kinematical features of the models and the behavior of the anisotropy of the dark energy, are examined in detail.  相似文献   

11.
Recently, a dark energy model characterized by the age of the universe, dubbed “agegraphic dark energy”, was proposed by Cai. In this paper, a connection between the quintessence scalar-field and the agegraphic dark energy is established, and accordingly, the potential of the agegraphic quintessence field is constructed.  相似文献   

12.
In this work, we establish a correspondence between the holographic dark energy model and polytropic gas model of dark energy in the FRW universe. This correspondence allows us to reconstruct the potential and the dynamics for the scalar field of the polytropic model according to the evolution of holographic dark energy in the FRW universe.  相似文献   

13.
We assume generalized ghost Pilgrim dark energy(GGPDE) model in the presence of cold dark matter in flat FRW universe.With suitable choice of interaction term between GGPDE and cold dark matter,we investigate the nature of equation of state parameter for GGPDE.Also,we investigate the natures of dynamical scalar field models(such as quintessence,tachyon,k-essence,and dilaton dark energy) and concerned potentials through the correspondence phenomenon between GGPDE and these models.  相似文献   

14.
We assume generalized ghost Pilgrim dark energy (GGPDE) model in the presence of cold dark matter in flat FRW universe. With suitable choice of interaction term between GGPDE and cold dark matter, we investigate the nature of equation of state parameter for GGPDE. Also, we investigate the natures of dynamical scalar field models (such as quintessence, tachyon, k-essence, and dilaton dark energy) and concerned potentials through the correspondence phenomenon between GGPDE and these models.  相似文献   

15.
We construct a holographic p-wave superconductor model in the background of quintessence AdS black hole with an SU(2) Yang-Mills gauge field and then probe the effects of quintessence on the holographic p-wave superconductor. We investigate the relation between the critical temperature and the state parameter of quintessence, and present the numerical results for electric conductivity. It is shown that the condensation of the vector field becomes harder as the absolute value of the state parameter increases. Unlike the scalar condensate in the s-wave model, the condensation of the vector field in p-wave model can occur in the total value range of the state parameter w_q of quintessence. These results could help us know more about holographic superconductor and dark energy.  相似文献   

16.
17.
In this work, we consider a non-flat universe in the framework of fractal cosmology. We have investigated the co-existence of different kinds of dark energy models such as tachyonic field, DBI-essence, hessence, k-essence, dilaton, quintessence with the modified Chaplygin gas (MCG) in fractal universe and obtained the statefinder parameters. The natures of the scalar fields and the concerned potentials have been analyzed by the correspondence scenario in the fractal universe.  相似文献   

18.
We study a cosmological implication of holographic dark energy in the Brans–Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter α (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans–Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans–Dicke cosmology framework.  相似文献   

19.
20.
In this paper we study the cosmological evolution of the holographic dark energy in a cyclic universe, generalizing the model of holographic dark energy proposed by Li. The holographic dark energy with c<1 can realize a quintom behavior; namely, it evolves from a quintessence-like component to a phantom-like one. The holographic phantom energy density grows rapidly and dominates the late-time expanding phase, helping to realize a cyclic universe scenario in which the high energy regime is modified by the effects of quantum gravity, causing a turn-around (and a bounce) of the universe. The dynamical evolution of holographic dark energy in the regimes of low energy and high energy is governed by two differential equations, respectively. It is of importance to link the two regimes for this scenario. We propose a link condition giving rise to a complete picture of holographic evolution of a cyclic universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号