首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the difference between on site Hubbard and long range Coulomb repulsions for two interacting particles in a disordered chain. The system size L (in units of the lattice spacing) is of the order of the one particle localization length and the energies are taken near the band center. In the two cases, the limits of weak and strong interactions are characterized by uncorrelated energy levels and are separated by a crossover regime where the states are more extended and the spectra more rigid. U denoting the interaction strength and t the kinetic energy scale, the crossovers take place for interaction energy to kinetic energy ratios U/t and U/(2tL) of order one, for Hubbard and Coulomb repulsions respectively. While Hubbard repulsion can only yield weak critical chaos with intermediate spectral statistics, Coulomb repulsion can drive the two particle system to quantum chaos with Wigner-Dyson spectral statistics. The interaction matrix elements are studied to explain this difference. Received 21 March 2000 and Received in final form 5 February 2001  相似文献   

2.
We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping δ away from half-filling, finite-system density-matrix renormalization-group (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/δ and 1/δ, respectively, corresponding to ordering wavevectors 2kF and 4kF for the currents and densities, where 2kF = π (1 − δ). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/δ, the DMRG results are consistent with a true long-range order scenario for the currents and densities.  相似文献   

3.
We propose a Green's function technique, to investigate finite-temperature properties of the Hubbard model on the triangular lattice. The lattices are covered by dimers. The method is exact in two limits:U=0 or decoupled dimers. We apply this approximate method to calculate the ground state energy, the specific heat and the single-particle spectral weight for the 1/2-filled case. The largest lattice considered has 16×16 sites. The approximate ground state energy as a function of the on-site interactionU oscillates around the exact energyin the 1/2-filled case. We find two peaks in the specific heat. ForU5t the single-particle spectral weight splits into upper and lower Hubbard bandasymmetrically. Thus in the 1/2-filled case the chemical potential is placed in the upper band leading to a metallic state. The approximate technique yields a finite zero-point entropy for mediumU. All the investigations signal a RVB state in the range of mediumU as formerly proposed by Callaway.  相似文献   

4.
We perform numerical simulations of the Hubbard model using the projector Quantum Monte Carlo method. A novel approach for finite size scaling is discussed. We obtain evidence in favor of d-wave superconductivity in the repulsive Hubbard model. For U=4, is roughly estimated as K. Received 8 September 1998  相似文献   

5.
6.
We study the influence of the short-ranged Hubbard correlation U between the conduction electrons on the Cooper pair formation in normal (s-wave) superconductors. The Coulomb correlation is considered within the standard second order perturbation theory, which becomes exact in the weak coupling limit but goes beyond the simple Hartree-Fock treatment by yielding a finite lifetime of the quasiparticles at finite temperature. An attractive pairing interaction V, which may be mediated by the standard electron-phonon mechanism, is considered between nearest neighbor sites. A critical value for the attractive interaction is required to obtain a superconducting state. For finite temperature a gapless superconductivity is obtained due to the finite lifetime of the quasiparticles, i.e. the Coulomb correlation has a pair-breaking influence. The energy gap and depend very sensitively on U, V and band filling n and develop a maximum away from half filling as function of n. The ratio varies with n, being higher than the BCS value near half filling and reaching the BCS value for lower n. Received 17 February 1999  相似文献   

7.
The strong-coupling perturbation theory of the Hubbard model is presented and carried out to order (t/U)5 for the one-particle Green function in arbitrary dimension. The spectral weight is expressed as a Jacobi continued fraction and compared with new Monte-Carlo data of the one-dimensional, half-filled Hubbard model. Different regimes (insulator, conductor and short-range antiferromagnet) are identified in the temperature-hopping integral (T,t) plane. This work completes a first paper on the subject (Phys. Rev. Lett. 80, 5389 (1998)) by providing details on diagrammatic rules and higher-order results. In addition, the non half-filled case, infinite resummations of diagrams and the double occupancy are discussed. Various tests of the method are also presented. Received 25 October 1999  相似文献   

8.
We have studied the critical behaviour of a doped Mott insulator near the metal-insulator transition for the infinite-dimensional Hubbard model using a linearized form of dynamical mean-field theory. The discontinuity in the chemical potential in the change from hole to electron doping, for U larger than a critical value U c, has been calculated analytically and is found to be in good agreement with the results of numerical methods. We have also derived analytic expressions for the compressibility, the quasiparticle weight, the double occupancy and the local spin susceptibility near half-filling as functions of the on-site Coulomb interaction and the doping. Received 15 March 2001 and Received in final form 22 May 2001  相似文献   

9.
A real-space method has been introduced to study the pairing problem within the generalized Hubbard Hamiltonian. This method includes the bond-charge interaction term as an extension of the previously proposed mapping method [1] for the Hubbard model. The generalization of the method is based on mapping the correlated many-body problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space, where the problem can be solved exactly. In a one-dimensional lattice, we analyzed the three particle correlation by calculating the binding energy at the ground state, using different values of the bond-charge, the on-site (U) and the nearest-neighbor (V) interactions. A pairing asymmetry is found between electrons and holes for the generalized hopping amplitude, where the hole pairing is not always easier than the electron case. For some special values of the hopping parameters and for all kinds of interactions in the Hubbard Hamiltonian, an analytical solution is obtained. Received 21 January 2000 and Received in final form 18 July 2000  相似文献   

10.
11.
A numerical method is described for evaluating transverse spin correlations in the random phase approximation. Quantum spin-fluctuation corrections to sublattice magnetization are evaluated for the antiferromagnetic ground state of the half-filled Hubbard model in two and three dimensions in the whole U/t range. Extension to the case of defects in the AF is also discussed for spin vacancies and low-U impurities. In the limit, the vacancy-induced enhancement in the spin fluctuation correction is obtained for the spin-vacancy problem in two dimensions, for vacancy concentration up to the percolation threshold. For low-U impurities, the overall spin fluctuation correction is found to be strongly suppressed, although surprisingly spin fluctuations are locally enhanced at the low-U sites. Received 27 April 1998 and Received in final form 13 August 1998  相似文献   

12.
In this work, we present a model and a method to study integer quantum Hall (IQH) systems. Making use of the Landau levels structure we divide these two-dimensional systems into a set of interacting one-dimensional gases, one for each guiding center. We show that the so-called strong field approximation, used by Kallin and Halperin and by MacDonald, is equivalent, in first order, to a forward scattering approximation and analyze the IQH systems within this approximation. Using an appropriate variation of the Landau level bosonization method we obtain the dispersion relations for the collective excitations and the single-particle spectral functions. For the bulk states, these results evidence a behavior typical of non-normal strongly correlated systems, including the spin-charge splitting of the single-particle spectral function. We discuss the origin of this behavior in the light of the Tomonaga-Luttinger model and the bosonization of two-dimensional electron gases.  相似文献   

13.
A precursor effect on the Fermi surface in the two-dimensional Hubbard model at finite temperatures near the antiferromagnetic instability is studied using three different itinerant approaches: the second order perturbation theory, the paramagnon theory (PT), and the two-particle self-consistent (TPSC) approach. In general, at finite temperature, the Fermi surface of the interacting electron systems is not sharply defined due to the broadening effects of the self-energy. In order to take account of those effects we consider the single-particle spectral function A(, 0) at the Fermi level, to describe the counterpart of the Fermi surface at T = 0. We find that the Fermi surface is destroyed close to the pseudogap regime due to the spin-fluctuation effects in both PT and TPSC approaches. Moreover, the top of the effective valence band is located around = (π/2,π/2) in agreement with earlier investigations on the single-hole motion in the antiferromagnetic background. A crossover behavior from the Fermi-liquid regime to the pseudogap regime is observed in the electron concentration dependence of the spectral function and the self-energy. Received 8 September 2000 and Received in final form 20 December 2000  相似文献   

14.
We extend the analysis of the renormalization group flow in the two-dimensional Hubbard model close to half-filling using the recently developed temperature flow formalism. We investigate the interplay of d-density wave and Fermi surface deformation tendencies with those towards d-wave pairing and antiferromagnetism. For a ratio of next nearest to nearest neighbor hoppings, t'/t = - 0.25, and band fillings where the Fermi surface is inside the Umklapp surface, only the d-pairing susceptibility diverges at low temperatures. When the Fermi surface intersects the Umklapp surface close to the saddle points, d-wave pairing, d-density wave, antiferromagnetic and, to a weaker extent, d-wave Fermi surface deformation susceptibilities grow together when the interactions flow to strong coupling. We interpret these findings as indications for a non-trivial strongly coupled phase with short-ranged superconducting and antiferromagnetic correlations, in close analogy with the spin liquid ground state in the well-understood two-leg Hubbard ladder. Received 23 January 2002  相似文献   

15.
16.
The half-filled Hubbard model on the Bethe lattice with coordination number z=3 is studied using the density-matrix renormalization group (DMRG) method. Ground-state properties such as the energy per site E, average local magnetization , its fluctuations and various spin correlation functions are determined as a function of the Coulomb interaction strength U/t. The local magnetic moments increase monotonically with increasing Coulomb repulsion U/t showing antiferromagnetic order between nearest neighbors []. At large U/t, is strongly reduced with respect to the saturation value 1/2 due to exchange fluctuations between nearest neighbors (NN) spins [ for ]. shows a maximum for U/t=2.4-2.9 that results from the interplay between the usual increase of with increasing U/t and the formation of important permanent moments at large U/t. While NN sites show antiferromagnetic spin correlations that increase with increasing Coulomb repulsion, the next NN sites are very weakly correlated over the whole range of U/t. The DMRG results are discussed and compared with tight-binding calculations for U=0, independent DMRG studies for the Heisenberg model and simple first-order perturbation estimates. Received 8 February 1999 and Received in final form 14 June 1999  相似文献   

17.
The O(3) symmetric Anderson model is an example of a system which has a stable low energy marginal Fermi liquid fixed point for a certain choice of parameters. It is also exactly equivalent, in the large U limit, to a localized model which describes the spin degrees of freedom of the linear dispersion two channel Kondo model. We first use an argument based on conformal field theory to establish this precise equivalence with the two channel model. We then use the numerical renormalization group (NRG) approach to calculate both one-electron and two-electron response functions for a range of values of the interaction strength U. We compare the behaviours about the marginal Fermi liquid and Fermi liquid fixed points and interpret the results in terms of a renormalized Majorana fermion picture of the elementary excitations. In the marginal Fermi liquid case the spectral densities of all the Majorana fermion modes display a dependence on the lowest energy scale, and in addition the zero Majorana mode has a delta function contribution. The weight of this delta function is studied as a function of the interaction U and is found to decrease exponentially with U for large U. Using the equivalence with the two channel Kondo model in the large U limit, we deduce the dynamical spin susceptibility of the two channel Kondo model over the full frequency range. We use renormalized perturbation theory to interpret the results and to calculate the coefficient of the ln divergence found in the low frequency behaviour of the T=0 dynamic susceptibility. Received 29 January 1999  相似文献   

18.
We apply a diagrammatic expansion method around the atomic limit () for the U-t-t ' Hubbard model at half filling and finite temperature by means of a continued fraction representation of the one-particle Green's function. From the analysis of the spectral function we find an energy dispersion relation with a modulation of the energy gap in the insulating phase. This anisotropy is compared with experimental ARPES results on insulating cuprates. Received 18 May 2000 and Received in final form 9 August 2000  相似文献   

19.
We investigate the physical properties of two coupled chains of electrons, with a nearly half-filled band, as a function of the interchain hopping t and the doping. We show that upon doping, the system undergoes a metal-insulator transition well described by a commensurate-incommensurate transition. By using bosonization and renormalization we determine the full phase diagram of the system, and the physical quantities such as the charge gap. In the commensurate phase two different regions, for which the interchain hopping is relevant and irrelevant exist, leading to a confinement-deconfinement crossover in this phase. A minimum of the charge gap is observed for values of t close to this crossover. At large t the region of the commensurate phase is enhanced, compared to a single chain. At the metal-insulator transition the Luttinger parameter takes the universal value K ρ * = 1, in agreement with previous results on special limits of this model. Received 31 July 2000  相似文献   

20.
We consider the asymptotic behaviour of the Chern-Simons Green's function of the ν = 1/ system for an infinite area in position-time representation. We calculate explicitly the asymptotic form of the Green's function of the interaction free Chern-Simons system for small times. The calculated Green's function vanishes exponentially with the logarithm of the area. Furthermore, we discuss the form of the divergence for all τ and also for the Coulomb interacting Chern-Simons system. We compare the asymptotics of the exact Chern-Simons Green's function with the asymptotics of the Green's function in the Hartree-Fock as well as the random-phase approximation (RPA). The asymptotics of the Hartree-Fock Green's function correspondence well with the exact Green's function. In the case of the RPA Green's function we do not get the correct asymptotics. At last, we calculate the self consistent Hartree-Fock Green's function. Received 5 July 2001 and Received in final form 30 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号