首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘国发  张元福 《化学学报》1985,43(11):1104-1106
我们曾简化和改进了Horrocks方法制得乙酰丙酮-5,10,15,20-四苯基卟啉稀土配合物。在此工作基础上,研究了邻硝基苯基卟啉稀土配合物的制备和性质。本文报道乙酰丙酮-5,10,15,20-四(邻氯苯基)卟啉稀土配合物Ln(o-Cl)Tppacao(Ln:Tb,Dy,Tm;(o-Cl)Tpp:四邻氯苯基卟啉;acac:乙酰丙酮根)和间氯苯基配合物Ln(m-Cl)Tppacac(Ln:Tb,Dy,Ho,Er,Tm,Yb,Lu;(m-Cl)Tppacac:四间氯苯基卟啉),并表征了它们的性质。  相似文献   

2.
Mesostructured silica films have attracted interest as potential platforms for sensing, molecular sieving, catalysis, and others. The fabrication of free-standing silica films on water, however, is challenging due to the need for scaffolding agents that would constitute effective templates. We describe the assembly of thin film at the air/water interface comprising quaternary silicates and polydiacetylene (PDA), a unique chromatic polymer forming two-dimensional conjugated networks, and the use of these films for biological sensing. PDA exhibits a dual role in the system-both as the amphiphilic matrix facilitating immobilization of the silicate colloidal units at the air/water interface and additionally a chromatic reporter that undergoes visible blue-red transitions, accompanied by fluorescence transformations, in the presence of analytes. We demonstrate the application of the silicate/PDA thin films for the detection of bacterial proliferation.  相似文献   

3.
Star diblock copolymers containing polystyrene (PS) and poly(ethylene oxide) (PEO) were investigated as surface films at the air/water interface. Both classic and dendritic-like stars were prepared containing either a PS core and PEO corona or the reverse. The investigated polymers, consisting of systematic variations in architectures and compositions, were spread at the air/water interface, generating reproducible surface pressure-area isotherms. All of the films could be compressed to higher pressures than would be possible for pure PEO. For stars containing 20% or more PEO, three distinct regions appeared. At higher areas, the PEO absorbs in pancakelike structures at the interface with PS globules sitting atop. Upon compression, a pseudoplateau transition region appeared. Both regions strongly depended on PEO composition. The pancake area and the pseudoplateau width and pressure increased in a linear fashion with an increasing amount of PEO. In addition, minimum limits of PEO chain length and mass percentage were determined for observing a pseudoplateau. At small areas, the film proved less compressible, producing a rigid film in which PS dominated. Here, the film area increased with both molecular weight and the amount of PS. Comparison with pure linear PS showed the stars spread more, occupying greater areas. Among the stars, the PEO-core stars were more compact while the PS-core stars spread more. The influence of architecture in terms of the core/corona polymers and branching were also examined. The effects of architecture were subtle, proving less important than PEO chain length or mass percentage.  相似文献   

4.
We have determined the structure formed at the air-water interface by semifluorinated alkanes (C(8)F(17)C(m)H(2m+1) diblocks, F8Hm for short) for different lengths of the molecule (m = 14, 16, 18, 20) by using surface pressure versus area per molecule isotherms, Brewster angle microscopy (BAM), and grazing incidence x-ray experiments (GISAXS and GIXD). The behavior of the monolayers of diblocks under compression is mainly characterized by a phase transition from a low-density phase to a condensed phase. The nonzero surface pressure phase is crystalline and exhibits two hexagonal lattices at two different scales: a long-range-order lattice of a few tens of nanometers lateral parameter and a molecular array of about 0.6 nm parameter. The extent of this organization is sufficiently large to impact larger scale behavior. Analysis of the various compressibilities evidences the presence of non organized molecules in the monolayer for all 2D pressures. At room temperature, the self-assembled structure appears generic for all the F8Hm investigated.  相似文献   

5.
An amphiphilic dendron containing an azobenzene ring at the focal point and the l-glutamate peripheral groups was designed. Its monolayer formation and host-guest reaction with cyclodextrins at the air/water interface and the properties of the transferred Langmuir-Blodgett (LB) films were investigated. The individual dendron, although without any long alkyl chains, could still form a stable monolayer at the air/water interface because of the good balance between hydrophilic and hydrophobic parts within the molecule. When cyclodextrin (CyD) was added to the subphase, a host-guest reaction occurred in situ at the air/water interface. The inclusion of the focal azobenzene moiety into the cavity of cyclodextrin decreased the packing of the aromatic ring and also led to the diminishment of the molecular area. Both the films formed at the surface of pure water and aqueous cyclodextrins were transferred onto solid substrates. Nanofiber structures were obtained for the film from the water surface as a result of the packing of the azobenzene groups, and circular domains were obtained for the film transferred from the aqueous CyD phases. The film transferred from the water surface showed an exciton couplet in the absorption band of azobenzene, whereas a negative Cotton effect was obtained for the film from CyD subphases. It was found that the supramolecular chirality in the LB film transferred from water was due to the transfer of the molecular chirality to the assemblies whereas that from the CyD subphase was due to the inclusion of azobenzene into the chiral cavity. Interestingly, the film from the water surface was photoinactive, whereas a reversible optical and chiroptical switch could be obtained for the film from the α-CyD subphase. The work provided a way to regulate the assembly and functions of organized molecular films by taking advantage of the interfacial host-guest reaction.  相似文献   

6.
Ultra-thin films of and precursor polymers for polybenzimidazole (PBI), polybenzoxazole (PBO), or polybenzothiazole (PBT) were formed at air/water interface by spreading monomers and then polymerizing on the water surface. These thin films could be deposited onto appropriate substrates by using the LB method of horizontal lifting. Moreover, the heat-treatment of the built-up films of the precursor polymers of PBI, PBO, and PBT formed the ultra-thin films of high temperature polymers. The resulting ultra-thin films had uniform and controllable thickness, but remained fairly stable when subjected to temperature up to 300°C. They also had good solvent resistance.  相似文献   

7.
Different sizes of nanotubes of poly(2-methoxy-5-(n-hexadecyloxy)-p-phenylene vinylene)(MH-PPV) have been fabricated at the air/water interface by compressing a monolayer of MH-PPV beyond its collapse point, and their structural characteristics were studied by means of TEM, AFM, SAXRD, IRRAS.  相似文献   

8.
Monolayer films on the neutral water substrate were obtained by spreadingN-trifluoroacetic anhydride (NTF)-modified nylon 66 or nylon 612 in chloroform solutions. Alternatively, monolayer films were obtained by spreading from nylon 66 solutions in the 31 mixture of benzene (B) and phenol (P). The temperatures studied are 10.3°, 14.7°C, and 19.4°C. The isothermss of surface pressure (), and surface moment () against surface area per residue (A) were determined. The -A isotherms of the NTF-modified nylon 66/chloroform and the nylon 66/BP were found to be an expanded type, while that of NTF-modified nylon 612/chloroform was of a condensed type. The NTF-modified nylon 66/chloroform solutions could yield well-spread films even higher concentrations than nylon 66/BP solutions. In the -A isotherms at 10.3° and 14.7°C, the surface moments are constant at 143 mD/residue for NTF-modified nylon 66/chloroform, and 340 mD/residue for nylon 66/BP until the surface area reaches where the -A isotherms show a transition point. After the transition point, the surface moments for both systems drop steadily. However, the surface moment at 19.4°C shows a maximum at the transition point. Possible configuration of the nylon 66 residue in monolayer is discussed.  相似文献   

9.
Poly(epsilon-caprolactone)/polystyrene (PCL/PS) blends, where nonamphiphilic PS is glassy in the bulk state at the experimental temperature of 22.5 degrees C, are immiscible as Langmuir films at the air/water (A/W) interface. Surface pressure-area per monomer isotherm analyses indicate that the surface concentration of amphiphilic PCL is the only factor influencing the surface pressure below the collapse transition. For PS-rich blends, Brewster angle microscopy (BAM) studies at the A/W interface and atomic force microscopy studies on Langmuir-Schaefer films reveal that PS nanoparticle aggregates formed at very low surface pressures can form networks upon further compression. The morphologies seen in PS-rich blends (networklike rings) are consistent with a recent study of a nonamphiphilic polyhedral oligomeric silsesquioxane (POSS), octaisobutyl-POSS, blended with amphiphilic poly(dimethylsiloxane), suggesting that the nonamphiphilic PS aggregates at the A/W interface produce domains with dipole densities that differ from that of pure PCL. In all composition regimes, the amphiphilic PCL phase tends to spread and form a continuous surface layer at the A/W interface, while simultaneously improving the dispersion of nonamphiphilic PS domains. During film expansion, BAM images show a gradual change in the surface morphology from highly continuous networklike structures (PS-rich blends) to broken ringlike structures (intermediate composition) to small discontinuous aggregates (PCL-rich blends). This study provides valuable information on the morphological evolution of semicrystalline PCL-based polymer blends confined in a "two-dimensional" geometry at the A/W interface and fundamental insight into the influence of microstructure (domain size, phase-separated structures, crystalline morphology, etc.) on the interfacial properties of blends as Langmuir films.  相似文献   

10.
The Langmuir film balance technique was used to determine the hydrolytic kinetics of monolayers of the stereocomplex formed from mixtures of enantiomeric polylactides, poly(L-lactide) (L-PLA) and poly(D-lactide) (D-PLA), spread at the air-water interface. The present study investigated parameters such as degradation medium, mixture composition, and time on the relative degradation rate. The pi-A isotherms of monolayers of the mixtures provide clear evidence for the presence of a stereocomplex; the isotherms of monolayers of individual polyenantiomer show a transition at about 8.5 mN/m, whereas the transition of monolayers containing a stereocomplex formed from the equimolar mixture shifted to higher surface pressure, about 11 mN/ m. The rate of hydrolysis was recorded by a change in occupied area when the monolayer is maintained at a constant surface pressure. The hydrolysis of the mixture monolayers under basic conditions was slower than that of individual polyenantiomer monolayers, depending on the composition or the degree of complexation. In the presence of proteinase K, the enzymatic hydrolysis rate of mixture monolayers with >50 mol % l-PLA was much slower than that of the single-component L-PLA monolayer. The monolayers formed from mixtures with < or =50 mol % L-PLA did not show any change of occupied areas. This result is explained by the inactivity of D-PLA and stereocomplexed chains to the enzyme. From both results, it can be concluded that the retardation of the hydrolysis of mixture monolayers is mainly due to a strong interaction between D- and L-lactide unit sequences, which prevents the penetration of water or enzyme into the bulk.  相似文献   

11.
Surface pressure-induced crystallization of poly(epsilon-caprolactone) (PCL) from a metastable region of the surface pressure-area per monomer (Pi-A) isotherm in Langmuir monolayers at the air/water (A/W) interface has been captured in real time by Brewster angle microscopy (BAM). Morphological features of PCL crystals grown in Langmuir films during the compression process exhibit four fully developed faces and two distorted faces. During expansion of the crystallized film, polymer chains slowly detach from the crystalline domains and diffuse back into the monolayer as the crystals "melt". Typical diffusion-controlled morphologies are revealed by BAM during the melting process as the secondary dendrites melt away faster, that is, at a higher surface pressure than the principal axes. Electron diffraction on Langmuir-Schaefer films suggests that the lamellar crystals are oriented with the polymer chain axes perpendicular to the substrate surface, while atomic force microscopy reveals a crystal thickness of approximately 7.6 nm.  相似文献   

12.
The photocurrent at the polarized water/1,2-dichloroethane (DCE) interface was successfully observed in the presence of a lipophilic sensitizer, 5,10,15,20-tetraphenylporphyrinato zinc (ZnTPP), in the organic phase. The photocurrent transient responses were apparently affected by the employed organic supporting electrolyte: tetrapenthylammonium tetraphenylborate (TPnATPB) or tris(tetraoctylammonium)tungstophosphate ((TOcA)3PW12O40). The photocurrent measured in the TPnATPB system exhibited rather slow responses associated with the ion transfer of photoproducts. On the other hand, the photoinduced heterogeneous electron transfer could be observed in the use of (TOcA)3PW12O40. The photocurrent intensity in the (TOcA)3PW12O40 system exhibited an apparent pH dependence and the photoreduction of hydrogen ions probably took place at the water/DCE interface. By analyzing the real and imaginary components of the photocurrent depending on the photoexcitation frequency, we roughly estimated the phenomenological rate constants of the product separation (k(ps)) and recombination (k(rec)) processes as log(k(ps)/s(-1)) = 1.5 +/- 0.2 and log(k(rec)/s(-1)) = 1.8 +/- 0.1, respectively.  相似文献   

13.
《Supramolecular Science》1997,4(3-4):265-273
Monodisperse spherical polymer particles with anionic and cationic shells were studied for their monolayer formation and compression behaviour on an aqueous subphase as a function of pH and salt (KCl) concentration. In addition, monolayers of monodisperse and bidisperse mixtures of 434 and 214 nm sized anionic particles were studied for their morphology by scanning electron microscopy (SEM). The anionic particles were prepared by soap-free emulsion polymerization of styrene and acrylic acid, and the cationic particles from styrene and 2-acryloxyethyl trimethylammonium chloride. Independent of the chemical nature of the shell, the particles formed monolayers at high salt or acid concentration in the subphase. However, at neutral pH and if no salt was present in the subphase only a part of the spheres formed monolayers, while the residual particles disappeared into the subphase. The origin of this behaviour is discussed in terms of ionization and electrostatic shielding of the polar groups.Compressed monolayers of monodisperse particles consisted of randomly oriented domains of up to 20 particles with small holes in between, the holes not exceeding two particle diameters in size. Films of bidisperse mixtures were highly disordered. If small particles were present in excess, they formed a fairly disordered monolayer and the large particles were situated on top or below this layer. If the number ratio of both sorts of particles approached unity, the texture became disordered and bi- and multilayered aggregates were observed.  相似文献   

14.
Electric surface potential (V) and surface tension measurements of aqueous solutions of some aliphatic compounds were used to determine the surface activity, orientation of molecules at the water/air interface, effective dipole moments (connected with water molecules, hydrophilic and hydrophobic groups), and local dielectric permittivities of the surface layer.  相似文献   

15.
A series of three-arm star block copolymers were examined using atomic force microscopy (AFM). These stars consisted of a polystyrene core composed of ca. 111 styrene units/branch with poly(ethylene oxide) (PEO) chains at the star periphery. Each star contained different amounts of PEO, varying from 107 to 415 ethylene oxide units/branch. The stars were spread as thin films at the air/water interface on a Langmuir trough and transferred onto mica at various surface pressures. Circular domains representing 2D micelle-like aggregated molecules were observed at low pressures. Upon further compression, these domains underwent additional aggregation in a systematic manner, including micellar chaining. At this point, domain area and the number of molecules/domain increased with increasing pressure. In addition, it was found that longer PEO chains led to greater intermolecular separation and less aggregation. These AFM results correspond to attributes seen in the surface pressure-area isotherms of the stars. In addition, they demonstrate the viability of AFM as a quantitative characterization technique.  相似文献   

16.
As one of the most primitive nonlinear optical phenomena, optical second harmonic genera-tion (SHG) has been investigated for half a century and it has become a very useful spectroscopic tool in the study of surface and interface[1—3]. It was theoretically shown that the SH signal cannot be generated in a centrosymmetric system. However, the generation of SH signal from the centro-symmetric molecules such as fullerene (C60) and CuPc has been detected[4—7]. In our recent ex-periments, an …  相似文献   

17.
Films made of cis-bis-decanoate-tin(IV) phthalocyanine (PcSn10) and racemic dipalmitoylphosphatidylcholine (DPPC) are studied with compression isotherms and Brewster angle microscopy (BAM) at the air/water interface. Films enriched in PcSn10 present phase separation elliptical-shaped domains. These domains present optical anisotropy and molecular order. They are enriched in PcSn10, and the film outside these domains is enriched in DPPC, as shown in by high-angle annular dark-field transmission electron microscopy on Langmuir-Blodgett (LB) transferred films. Film collapse area and atomic force microscopy images of LB transferred films on mica indicate that the films are actually multilayers. A computational survey was performed to determine how the PcSn10 molecules prefer to self-assemble, in films basically made of PcSn10. The relative energetic stability for several dimeric assemblies was obtained, and a crystal model of the film was developed through packing and repeating the PcSn10 molecules, along the crystallographic directions of the unit cell. Our results contribute to understanding the strong interaction between PcSn10 and DPPC at the air/water interface, where even small quantities of DPPC (~1-2%) can modify the film in an important way.  相似文献   

18.
Polyporphyrin films were obtained by electrooxidative polymerization of 5,10,15,20-tetra(4-pyridyl)porphyrin which, in turn, was obtained by condensation of pyrrole with pyridine-4-carboxaldehyde. The polymer formation involved the side substituents, with the π-conjugated porphyrin platform being preserved. The obtained polyporphyrin forms an electroconductive coating possessing semiconductor properties with the band gap of 1.76 eV  相似文献   

19.
A hybrid monolayer film of Au nanoparticles, half-covered with dioctadecyldimethylammonium chloride (DODAC), was prepared at the air/water interface and characterized using transmission electron microscopy (TEM), a quartz-crystal microbalance, and infrared spectra measurements. TEM images of the hybrid film showed that the distribution of Au nanoparticles depends on the surface density of DODAC and reaction time. IR spectral data provided evidence for a surface-enhanced effect of the Au nanoparticles. The wavenumber of CH(2)-stretch vibrations of DODAC in the infrared external reflection spectra revealed that the DODAC molecules were adsorbed onto the Au nanoparticles in a close-packed crystalline state for any surface density of DODAC, which is different from the usual behavior of Langmuir monolayers.  相似文献   

20.
Experiments are reported with foam films from aqueous solutions with increasing concentration of a cationic surfactant. A correlation is established between the foam film thickness and the possible variation of diffuse electric layer potential at the air/water interface from a negative value in absence of surfactant to positive values at higher surfactant concentrations. It is concluded that a charge reversal at the air/water interface is expected to occur under increasing concentration of cationic surfactants in aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号