首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two quinonoid bis(dicyanomethylene) oligothiophenes, terthiophene and quaterthiophene analogues of TCNQ, have been investigated by spectroelectrochemical experiments and density functional theory calculations. Electrochemical data show that the molecules can be both reduced and oxidized at relatively low potentials, and that the quaterthiophene derivative forms four stable redox species, the dianion, neutral, cation radical, and dication. The neutral oligomers are characterized by a strong electronic absorption in the red or near-infrared region and can be viewed as structural and electronic analogues of aromatic oligothiophenes in the dication or bipolaron state. Upon reduction, dianions, not anion radicals, are formed which absorb in the visible region. The theoretical calculations show that the dianions have aromatic oligothiophene moieties with two anionic dicyanomethylene groups. The transition from a quinonoid to an aromatic structure is fully supported by UV-vis-near-IR and vibrational spectroscopic data. Oxidation, generating cation radicals and dications, occurs at rather low potentials similar to those reported for oligothiophenes. The electronic spectra of these cations are understood from the calculations, which suggest that the oxidized species are stabilized by the partial aromatization of the oligothiophene backbone. IR spectra of the species, especially the CN stretching frequencies, confirm the structural conclusions and allow comparison with TCNQ and the TCNQ dianion.  相似文献   

2.
Interring twisting (change in the dihedral angle between conjugated rings) of polythiophene was studied theoretically using periodic boundary conditions (PBC) at the B3LYP/6-31G(d) level. We find that the band gap of polymers is strongly dependent on the interring twist angle; yet twisting requires very little energy. A twist of 30 degrees increases the band gap by 0.75 eV in polythiophene, while requiring only 0.41 kcal mol(-1) per monomer unit. Such a small energetic value is of the order of crystal packing or van der Waals forces. These results are compared with calculations performed on model oligomers. Sexithiophene, its radical cations, and its dication are optimized at 0-180 degrees end-to-end twist angles (which correspond to 0-36 degrees interring dihedral angles) using the B3LYP/6-31G(d) method. The theoretical results suggest that the HOMO-LUMO gap, ionization potential, and charge distribution of oligomers are strongly dependent on twisting, whereas, similar to the case of polythiophene, twisting of neutral oligothiophenes costs very little energy. In the case of the radical cation, the lowest energy transition is shifted to a longer wavelength region on twisting, while the second-lowest energy transition is shifted to a shorter wavelength region. This implies that twisted, doped conducting polymers (modeled here by an oligomer radical cation), in contrast to planar, doped polymers, should be transparent within a certain optical window (in the far-visible region, at approximately 1.5 eV). This observation is explained on the basis of changes in the shape and overlap of the frontier molecular orbitals.  相似文献   

3.
Dibenzo[a,e]pentalene (DBP) is a non-alternant conjugated hydrocarbon with antiaromatic character and ambipolar electrochemical behavior. Upon both reduction and oxidation, it becomes aromatic. We herein study the chemical oxidation and reduction of a planar DBP derivative and a bent DBP-phane. The molecular structures of its planar dication, cation radical and anion radical in the solid state demonstrate the gained aromaticity through bond length equalization, which is supported by nucleus independent chemical shift-calculations. EPR spectra on the cation radical confirm the spin delocalization over the DBP framework. A similar delocalization was not possible in the reduced bent DBP-phane, which stabilized itself by proton abstraction from a solvent molecule upon reduction. This is the first report on structures of a DBP cation radical and dication in the solid state and of a reduced bent DBP derivative. Our study provides valuable insight into the charged species of DBP for its application as semiconductor.  相似文献   

4.
Flash photolysis of bis[4.5-di(methylsulfanyl) 1,3-dithiol-2-ylidene]-9,10(-dihydroanthracene (1) in chloroform leads to formation of the transient radical cation species 1.+ which has a diagnostic broad absorption band at lambdamax approximately 650 nm. This band decays to half its original intensity over a period of about 80 micros. Species 1.+ has also been characterised by resonance Raman spectroscopy. In degassed solution 1.+ disproportionates to give the dication 1(2+), whereas in aerated solutions the photodegradation product is the 10-[4,5-di(methylsulfanyl) 1,3-dithiol-2-ylidene]anthracene-9(10 H)one (2). The dication 1(2+) has been characterised by a spectroelectrochemical study [lambdamax (CH2Cl2) = 377, 392, 419, 479 nm] and by an X-ray crystal structure of the salt 1(2-) (ClO4)2, which was obtained by electrocrystallisation. The planar anthracene and 1,3-dithiolium rings in the dication form a dihedral angle of 77.2 degrees; this conformation is strikingly different from the saddle-shaped structure of neutral 1 reported previously.  相似文献   

5.
A small series of p-quaterphenyl derivatives has been prepared in which the dihedral angle (phi) for the two central rings is constrained by dialkoxy spacers of varying length. The photophysical properties of these compounds remain comparable, but there is a clear correlation between the rate constants for nonradiative decay of both singlet and triplet excited states and phi in fluid solution. The rates tend toward a minimum as phi approaches 90 degrees . These effects are attributed to the general phenomenon of extended delocalization and can be traced to a combination of changes in the Huang-Rhys factor and the electron-vibrational coupling matrix element, both relating to displacement of the relevant potential energy surfaces and to the medium-frequency vibronic mode coupled to decay. The latter effect arises because of different levels of conjugation in the ground-state molecule. Such findings might have important implications for the design of improved light-emitting diodes. A similar angle dependence is noted for the yield of the pi-radical cation formed on photoionization in a polar solvent, but here, the effect is due to variations in the respective energy gaps between the relevant excited states.  相似文献   

6.
The chemical synthesis, isolation, and characterization of phenyl viologen (PV) as a dication, radical cation, and neutral species are described. Single-crystal X-ray diffraction of PV(2+)2Cl(-.)2H2O and PV(.+)PF(6)(-).pyridine reveals the expected differences in bond lengths and also a structural change from two coplanar central rings in PV(.+) to a twist of 36 degrees between the two central rings in PV(2+). The phenyl viologen radical cation exhibits behavior characteristic of many radical cations, including weak pi-dimerization in the solid state and reversible pi-dimerization in solution. Electrical conductivity measurements of neutral phenyl viologen, the first such measurements of a neutral viologen, reveal that it is a significantly better conductor than the radical cation. Differences in geometric relaxation during charge transfer offer a possible explanation for the higher conductivity of the neutral viologen.  相似文献   

7.
The first few bands in the optical spectra of radical cations can often be interpreted in terms of A-type transitions that involve electron promotions from doubly occupied to the singly occupied molecular orbital (SOMO) and/or B-type transition which involve electron promotion from the SOMO to virtual molecular orbitals. We had previously demonstrated that, by making use of Koopmans' theorem, the energies of A-type transitions can be related to orbital energy differences between lower occupied MOs and the highest occupied MO (HOMO) in the neutral molecule, calculated at the geometry of the radical cation. We now propose that the energies of B-type transitions can be related similarly to energy differences between the lowest unoccupied MO (LUMO) and higher virtual MOs in the dication, also calculated at the geometry of the radical cation, by way of an extension of Koopmans' theorem to virtual MOs similar to that used sometimes to model resonances in electron scattering experiments. The optical spectra of the radical cations of several polyenes and aromatic compounds, the matrix spectra of which are known (or presented here for the first time), and for which CASSCF/CASPT2 calculations are available, are discussed in terms of these Koopmans-based models. Then the spectra of five poly(bicycloalkyl)-protected systems and that of hexabenzocoronene, compounds not amenable to higher level calculations, are examined and it is found that the Koopmans-type calculations allow a satisfactory interpretation of most of the features in these spectra. These simple calculations therefore provide a computationally inexpensive yet effective way to assign optical transitions in radical ions. Limitations of the model are discussed.  相似文献   

8.
Dimer and trimer radical cations of benzene, toluene, and xylenes were produced selectively after gamma-irradiation in low-temperature 2-methylpentane matrices with electron scavengers: oxygen (O(2)) and sec-butyl chloride (sec-BuCl). The charge resonance (CR) band of the trimer radical cation (M(3)(+)) produced via the corresponding dimer radical cation (M(2)(+)) is clearly seen in the solution containing O(2) as the temperature increases over a range from 80 to 90 K. In o-xylene solution, a fairly strong and distinct M(3)(+) CR absorption is observed; this is due to the large M(3)(+)/M(2)(+) relative extinction coefficient. All benzene derivatives show an equilibrium between dimer and trimer radical cations at approximately 90 K; however, the equilibrium constants of toluene and the xylenes are considerably lower than that of benzene. Formation of the trimer radical cation is inhibited in sec-BuCl, which has commonly been used as a low-temperature optical matrix for producing cationic species. An ab initio DFT method is applied to predict the geometry of M(3)(+), giving "slipped sandwich" (for benzene, m-xylene, and p-xylene) and "slipped fan-shaped" (toluene and o-xylene) structures as the most plausible geometries. The experimentally observed spectroscopic parameters reflect well those predicted by TD-DFT calculation based on geometry, suggesting strong dependence of the geometry of M(3)(+) on substitution patterns. This is the first report not only of direct spectroscopic observation of aromatic trimer radical cations in the condensed phase but also on the quantitative analysis of their equilibria.  相似文献   

9.
The radical cations generated from 4-methyl- and 4,7-dimethylindanone, as well as their deuterated isotopomers, isolated in Argon matrices, were found to undergo enolization to the corresponding enol radical cations at rates that differ by orders of magnitude. It is shown by quantum chemical calculations that the effect of the remote methyl group in the 4-position is of purely electronic nature in that it stabilizes the unreactive pi-radical relative to the reactive sigma-radical state of the 7-methylindanone radical cation. The observed kinetic behavior of the two compounds can be reproduced satisfactorily on the basis of calculated height and width of the thermal barrier for enolization, using the Bell model for quantum mechanical tunneling. High-level calculations on the methylacrolein radical cation show that barriers for enolization in radical cations are overestimated by B3LYP/6-31G.  相似文献   

10.
The ring-opening reactions of the radical cations of hexamethyl Dewar benzene (1) and Dewar benzene have been studied using density functional theory (DFT) and complete active-space self-consistent field (CASSCF) calculations. Compound 1 is known to undergo photoinitiated ring opening by a radical cation chain mechanism, termed "quantum amplified isomerization" (QAI), which is due to the high quantum yield. Why QAI is efficient for 1 but not other reactions is explained computationally. Two radical cation minima of 1 and transition states located near avoided crossings are identified. The state crossings are characterized by conical intersections corresponding to degeneracy between doublet surfaces. Ring opening occurs by formation of the radical cation followed by a decrease in the flap dihedral angle. A rate-limiting Cs transition state leads to a second stable radical cation with an elongated transannular C-C bond and an increased flap dihedral. This structure proceeds through a conrotatory-like pathway of Cs symmetry to give the benzene radical cation. The role of electron transfer was investigated by evaluating oxidation of various systems using adiabatic ionization energies and electron affinities calculated from neutral and cation geometries. Electron-transfer theory was applied to 1 to investigate the limiting effects of back-electron transfer as it is related to the unusual stability of the two radical cations. Expected changes in optical properties between reactants and products of Dewar benzene compounds and other systems known to undergo QAI were characterized by computing frequency-dependent indices of refraction from isotropic polarizabilities. In particular, the reaction of 1 shows greater contrast in index of refraction than that of the Dewar benzene parent system.  相似文献   

11.
A new class of pi-extended TTF-type electron donors (11 a-c) has been synthesized by Wittig-Horner olefination of bianthrone (9) with 1,3-dithiole phosphonate esters (10 a-c). In cyclic voltammetry experiments, donors 11 a-c reveal a single, electrochemically irreversible oxidation-yielding the corresponding dicationic products-at relatively low oxidation potentials (approximately 0.7-0.8 V). Theoretical calculations, performed at the DFT level (B3 P86/6-31 G*), predict a highly-folded C(2h) structure for 11 a. In the ground state, the molecule adopts a double saddle-like conformation to compensate the steric hindrance. The calculations suggest that the intramolecular charge transfer associated with the HOMO-->LUMO transition is responsible for an absorption band observed above 400 nm. While the radical cation 11 a*+ retains the folded C(2h) structure predicted for the neutral molecule as the most stable conformation, the dication 11 a(2+) has a fully aromatic D(2) structure, formed by an orthogonal 9,9'-bianthryl central unit to which two singly-charged dithiole rings are attached. The drastic conformational changes that compounds 11 undergo upon oxidation account for their electrochemical properties. By means of pulse radiolysis measurements, radical-induced one-electron oxidation of 11 a-c was shown to lead to the radical cation species (11 a-c*+), which were found to disproportionate with generation of the respective dication species (11 a-c(2+)) and the neutral molecules (11 a-c).  相似文献   

12.
Organic radical cations form dicationic dimers in solution, observed experimentally as diamagnetic species in temperature-dependent EPR and low temperature UV/Vis spectroscopy. Dimerization of paraphenylenediamine, N,N-dimethyl-paraphenylenediamine and 2,3,5,6-tetramethyl-paraphenylenediamine radical cation in ethanol/diethylether mixture was investigated theoretically according to geometry, energetics and UV/Vis spectroscopy. Density Functional Theory including dispersion correction describes stable dimers after geometry optimization with conductor-like screening model of solvation and inclusion of the counter-ion. Energy corrections were done on double-hybrid Density Functional Theory with perturbative second-order correlation (B2PLYP-D) including basis set superposition error (BSSE), and multireference M?ller-Plesset second-order perturbation theory method (MRMP2) based on complete active space method (CASSCF(2,2)) single point calculation, respectively. All three dication π-dimers exhibit long multicenter π-bonds around 2.9±0.1? with strongly interacting orbitals. Substitution with methyl groups does not influence the dimerization process substantially. Dispersion interaction and electrostatic attraction from counter-ion play an important role to stabilize the dication dimers in solution. Dispersion-corrected double hybrid functional B2PLYP-D and CASSCF(2,2) can describe the interaction energetics properly. Vertical excitations were computed with Tamm-Dancoff approximation for time-dependent Density Functional Theory (TDA-DFT) at the B3LYP level with the cc-pVTZ basis set including ethanol solvent molecules explicitly. A strong interaction of the counter-ion and the solvent ethanol with the monomeric species is observed, whereas in the dimers the strong interaction of both radical cation species is the dominating factor for the additional peak in UV/Vis spectra.  相似文献   

13.
The structures and vibrational properties of a series of styryl-substituted sexithiophenes and their charged species have been examined using resonance Raman spectroscopy in conjunction with density functional theory calculations. The calculated geometries of the radical cations and dications indicate that the quinoidal charged defects are more strongly localized in the center of the thiophene backbone than is observed in other sexithiophenes. This defect confinement, induced by the positions of the styryl substituents, is particularly evident in the dication species. However, the defect confinement weakens when alkoxy groups are added onto the phenyl rings by causing the extension of the charged defect into the styryl groups. The Raman spectra of the neutral styryl sexithiophenes are dominated by intense thiophene symmetrical stretching modes in both the measured and predicted spectra. Oxidation generates radical cations and dications, both of which can be observed in the solution state resonance Raman spectra. Unlike other sexithiophenes, which generally show a downshift of the intense thiophene stretching mode from the radical cation to the dication, a small upshift is observed for the styryl-substituted sexithiophenes. The theoretical spectra predict an insignificant change during this transition and the eigenvector for this mode reveals that it is localized over the same area occupied by the confined defect. In contrast, the solid state resonance Raman spectra of electrochemically oxidized films reveal evidence of solely radical cations and there is an appreciable downshift of the intense thiophene stretching mode compared with the corresponding mode in the solution spectra. This implies that the increase in the effective conjugation length from the solution to the solid state is greater for the radical cations than for the neutral species. It therefore appears that the radical cations form pi stacks in the solid film and the resulting intermolecular interactions effectively allow a further extension of the electron delocalization.  相似文献   

14.
A computational study, using density functional theory calibrated against higher-level methods, has been undertaken to evaluate tertiary amines whose radical cations might lose hydrogen atoms from positions other than the alpha carbons. The purpose was to find photochemically activated reducing agents for carbon dioxide that could be regenerated in a separate photochemical reaction. The calculations have revealed two reactions that might be suitable for this purpose. In one, the nitrogen of the radical cation makes a bond to a remote carbon with simultaneous displacement of a hydrogen atom. In the other, a remote hydrogen atom is transferred to the nitrogen, thereby creating a distonic radical cation that can lose a hydrogen atom beta to the radical site. The latter reaction is found to be particularly favorable since it apparently involves a surface crossing that allows the amine radical cation and CO2 radical anion to transform smoothly to a ground-state formate ion and an alkene. A number of structural motifs are investigated for the amines. The lower ionization potential of aromatic amines, compared to their aliphatic analogues, is desirable in that it could permit the use of longer wavelength light to drive the reaction. However, a thermochemical cycle shows that the reduction in ionization potential must be matched by an increase in proton affinity of the amine if the intramolecular hydrogen transfer is to be exothermic. Most aromatic amines do not satisfy this criterion and, hence, would have to rely on the displacement reaction for hydrogen-atom release if they were to be used as renewable reagents for CO2 reduction. Examples of specific aromatic and aliphatic tertiary amines that should be suitable for the purpose are presented, and their relative merits and weaknesses are discussed.  相似文献   

15.
Zhu QY  Liu Y  Lu W  Zhang Y  Bian GQ  Niu GY  Dai J 《Inorganic chemistry》2007,46(24):10065-10070
A protonated bifunctional pyridine-based tetrathiafulvalene (TTF) derivative (DMT-TTF-pyH)NO3 and a copper(II) complex Cu(acac)2(DMT-TTF-py)2 have been obtained and studied. Electronic spectra of the protonated compound show a large ICT (intramolecular charge transfer) band shift (Deltalambda=136 nm) compared with that of the neutral compound. Cyclic voltammetry also shows a large shift of the redox potentials (DeltaE1/2(1)=77 mV). Theoretical calculation suggests that the pyridium substituent is a strong pi-electron acceptor. Crystal structures of the protonated compound and the metal complex have been obtained. The dihedral angle between least-squares planes of the pyridyl group and the dithiole ring might reflect the intensity of the ICT effect between the TTF moiety and the pyridyl group. It is also noteworthy that the TTF moiety could be oxidized to TTF2+ dication by Fe(ClO4)(3).6H2O when forming a metal complex, while the protonated TTF derivative can only be oxidized to the TTF*+ radical cation by Fe(ClO4)(3).6H2O even with an excess amount of the Fe(III) salt, which can be used to control the oxidation process to obtain neutral TTF, TTF*+ radical cation, or TTF2+ dication.  相似文献   

16.
New [3]- and [4]-dendralenes bearing electron-donor 1,3-dithiole and ferrocene substituents have been synthesised. Compounds 8, 15 and 17 have been characterised by single-crystal X-ray diffraction. Two of the dithiole rings of 8 are conjugated (dihedral angle 9 degrees), while the third dithiole ring is almost orthogonal to this plane, and hence its pi-electron system is isolated. For the dendralene precursor molecule 15, the substituted cyclopentadienyl ring, two C=C bonds and fused dithiole and dithiine rings comprise an extended pi-conjugated system. In molecule 17 the potential conjugation path C(6)C(3) C(4)C(5)-C5Hs is distorted by an 8 degrees twist around the C(3)-C(4) bond and a 7 degrees twist around the C(5)-C(21) bond, and the delocalisation along the chain is insignificant. Solution electrochemical data demonstrate that the dendralenes are strong pi-electron donors, which give rise to dication, radical trication or tetracation species. Spectroelectrochemical studies on compounds 7 and 10 suggest that the radical species are situated within the linear 1,2-ethylenediylidene moieties and that a conformational change may occur at the dication redox stage. UV/Vis spectroscopic data are consistent with poor cross-conjugation in these systems.  相似文献   

17.
The first stable stannyl radical (tBu2MeSi)3Sn* (1) has been synthesized by the reaction of tBu2MeSiNa with SnCl2-dioxane in diethyl ether. The X-ray crystal structure and electron paramagnetic resonance (EPR) data of this radical show that 1 has a planar geometry, being a pi-radical in both the solid and the liquid states. One-electron oxidation of 1 with Ph3C+.B(C6F5)4- in benzene quantitatively produced the corresponding cation (tBu2MeSi)3Sn+.B(C6F5)4- (2), representing the stable free stannylium ion that has been fully characterized by X-ray analysis and NMR data. Being free, 2 features a record downfield shifted resonance for stannylium ions: +2653 ppm.  相似文献   

18.
Three discrete oligomeric systems including an all-thiophene ( T6) system, a thiophene/phenylene ( TPTTPT) system, and a thiophene/EDOT/phenylene ( TPEEPT) system have been constructed and characterized with emphasis on structural, optical, electrochemical, and spectroelectrochemical properties. For all three chromophores, the radical cation, the dication, and the pi-dimer have been identified and characterized. EPR spectroscopy reveals that the radical cations of TPTTPT and TPEEPT have g values of 2.008-2.012 and peak-to-peak widths in the range 4.2-5.3 G. Formation of the radical cation takes place at a lower potential for TPEEPT than for TPTTPT and T6, whereas subsequent oxidation to the dication occurs more easily for TPTTPT than for TPEEPT and T6. We ascribe this observation to more localized charges in the oxidized species of TPEEPT, which is supported by our finding that the radical cation of TPEEPT is less prone to undergo pi-dimerization than the radical cations of TPTTPT and T6. All the oxidized species are sufficiently stable to allow for optical characterization, and the relative positions of all absorption bands are found to be in agreement with the electrochemical data. For further solid-state modifications of these materials, we have effectively modified the synthetic design and grafted terminal functionalities (e.s. acrylates) onto the discrete oligomers. Of these novel materials, TPEEPT proves to be the most promising anodically coloring material for electrochromics, and it undergoes reversible switching between two different colored states (bright yellow and clear blue) and one almost transparent and color neutral state. Contrast ratios, measured as Delta% T at lambda max, are as high as 62.5%, and switching times are in the range 2-5 s for the coloration process, though significantly longer for the bleaching process. As a proof of concept, we have successfully constructed a simple photopatterned electrochromic device by exploiting the terminal acrylate functionalities of the oligomers in a UV-initiated cross-linking process. To the best of our knowledge, this is the first oligomer-based photopatterned electrochromic device reported in the literature.  相似文献   

19.
One-electron oxidation of the non-alternant polycyclic aromatic hydrocarbon pleiadiene and related cyclohepta[c,d]pyrene and cyclohepta[c,d]fluoranthene in THF produces corresponding radical cations detectable in the temperature range of 293–263 K only on the subsecond time scale of cyclic voltammetry. Although the EPR-active red-coloured pleiadiene radical cation is stable according to the literature in concentrated sulfuric acid, spectroelectrochemical measurements reported in this study provide convincing evidence for its facile conversion into the green-coloured, formally closed shell and, hence, EPR-silent π-bound dimer dication stable in THF at 253 K. The unexpected formation of the thermally unstable dimeric product featuring a characteristic intense low-energy absorption band at 673 nm (1.84 eV; logε max = 4.0) is substantiated by ab initio calculations on the parent pleiadiene molecule and the PF6 salts of the corresponding radical cation and dimer dication. The latter is stabilized with respect to the radical cation by 14.40 kcal mol−1 (DFT B3LYP) [37.64 kcal mol−1 (CASPT2/DFT B3LYP)]. An excellent match has been obtained between the experimental and TD-DFT-calculated UV–vis spectra of the PF6 salt of the pleiadiene dimer dication, considering solvent (THF) effects.  相似文献   

20.
One-electron reduction of the "extended viologen" dication 1 yields the red cation radical 2, characterized by strong near-IR absorption. It has been generated and studied by pulse radiolytic, electrochemical, redox titration, UV-visible, and electron paramagnetic resonance spectroscopic methods. All results are in agreement with a fully delocalized electronic structure for 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号