首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We present a microfluidic cell-culture chip that enables trapping, cultivation and release of selected individual cells. The chip is fabricated by a simple hybrid glass-SU-8-PDMS approach, which produces a completely transparent microfluidic system amenable to optical inspection. Single cells are trapped in a microfluidic channel using mild suction at defined cell immobilization orifices, where they are cultivated under controlled environmental conditions. Cells of interest can be individually and independently released for further downstream analysis by applying a negative dielectrophoretic force via the respective electrodes located at each immobilization site. The combination of hydrodynamic cell-trapping and dielectrophoretic methods for cell releasing enables highly versatile single-cell manipulation in an array-based format. Computational fluid dynamics simulations were performed to estimate the properties of the system during cell trapping and releasing. Polystyrene beads and yeast cells have been used to investigate and characterize the different functions and to demonstrate biological compatibility and viability of the platform for single-cell applications in research areas such as systems biology.  相似文献   

2.
Urdaneta M  Smela E 《Lab on a chip》2008,8(4):550-556
This paper presents a method of using multiple frequencies to counteract electric field distortions that interfere with the dielectrophoretic (DEP) manipulation of particles or cells. To demonstrate the technique, simulations were performed for a scenario in which cells were to be loaded into a cage whose walls created parasitic trapping sites that prevented cells from entering it. By employing negative DEP on one electrode in conjunction with positive DEP on another, these traps could be almost completely cancelled. The model predictions were validated experimentally: multiple frequency DEP was used to load many cells into a cage in a matter of seconds in fluid flows of up to 300 microm s(-1), which could not be done with single frequency DEP. Actively cancelling field distortions permits the presence of features that would otherwise be prohibited near regions of dielectrophoretic manipulation, significantly expanding the environments in which dielectrophoresis can be used.  相似文献   

3.
Hwang H  Choi YJ  Choi W  Kim SH  Jang J  Park JK 《Electrophoresis》2008,29(6):1203-1212
This paper reports a lens-integrated liquid crystal display (LCD)-based optoelectronic tweezers (OET) system for interactive manipulation of polystyrene microspheres and blood cells by optically induced dielectrophoretic force. When a dynamic image pattern is projected into a specific area of a photoconductive layer in an OET, virtual electrodes are generated by spatially resolved illumination of the photoconductive layer, resulting in dielectrophoresis of microparticles suspended in the liquid layer under nonuniform electric field. In this study, the simple-structured OET system has been easily constructed with an OET device, an LCD and a condenser lens integrated in a conventional microscope. By using a condenser lens, both stronger dielectrophoretic forces and higher virtual electrode resolution than previously reported lens-less LCD-based OET platform are obtained. The effects of blurred LCD image and liquid chamber height on the performances of optoelectronic particle manipulation are investigated by measuring the bead velocities according to their sizes. An interactive control program for OET-based microparticle manipulation is also developed by Flash language. The integrated system is successfully applied to the parallel and interactive manipulation of red and white blood cells. Due to its simple structures, cheap manufacturing costs, and high performances, this new LCD-based OET platform may be a widely usable integrated system for optoelectronic manipulation of microparticles including living cells.  相似文献   

4.
Microfluidic devices for dielectrophoretic cell separation are typically designed and constructed using microfabrication methods in a clean room, requiring time and expense. In this paper, we describe a novel alternative approach to microfluidic device manufacture, using chips cut from conductor–insulator laminates using a cutter plotter. This allows the manufacture of microchannel devices with micron-scale electrodes along every wall. Fabrication uses a conventional desktop cutter plotter, and requires no chemicals, masks or clean-room access; functional fluidic devices can be designed and constructed within a couple of hours at negligible cost. As an example, we demonstrate the construction of a continuous dielectrophoretic cell separator capable of enriching yeast cells to 80% purity at 10 000 cells/s.  相似文献   

5.
Microanalytical methods offer attractive characteristics for rapid microbial detection and concentration. There is a growing interest in the development of microscale separation techniques. Dielectrophoresis (DEP), a nondestructive electrokinetic transport mechanism, is a technique with great potential for microbe manipulation, since it can achieve concentration and separation in a single step. DEP is the movement of particles due to polarization effects in nonuniform electric fields. The majority of the work on dielectrophoretic manipulation of microbes has employed alternating current fields in arrays of microelectrodes, an approach with some disadvantages. An alternative is to employ insulator-based DEP (iDEP), a dielectrophoretic mode where nonuniform fields are produced by employing arrays of insulating structures. This study presents the concentration and fractionation of a mixture of bacteria and yeast cells employing direct current-iDEP in a microchannel containing an array of cylindrical insulating structures. Negative dielectrophoretic trapping of both types of microorganisms was demonstrated, where yeast cells exhibited a stronger response, opening the possibility for dielectrophoretic differentiation. Simultaneous concentration and fractionation of a mixture of both types of cells was carried out analogous to a chromatographic separation, where a dielectropherogram was obtained in less than 2 min by applying an electric field gradient and achieving concentration factors in the order of 50 and 37 times the inlet concentration for Escherichia coli and Saccharomyces cerevisiae cells, respectively. Encouraging results were also obtained employing a sample of water taken from a pond. The findings demonstrated the great potential of iDEP as a rapid and effective technique for intact microorganism concentration and separation.  相似文献   

6.
This paper demonstrates the utilization of 3D semispherical shaped microelectrodes for dielectrophoretic manipulation of yeast cells. The semispherical microelectrodes are capable of producing strong electric field gradients, and in turn dielectrophoretic forces across a large area of channel cross‐section. The semispherical shape of microelectrodes avoids the formation of undesired sharp electric fields along the structure and also minimizes the disturbance of the streamlines of nearby passing fluid. The advantage of semispherical microelectrodes over the planar microelectrodes is demonstrated in a series of numerical simulations and proof‐of‐concept experiments aimed toward immobilization of viable yeast cells.  相似文献   

7.
Dielectrophoresis (DEP) is the motion of particles due to polarization effects in nonuniform electric fields. DEP has great potential for handling cells and is a non-destructive phenomenon. It has been utilized for different cell analysis, from viability assessments to concentration enrichment and separation. Insulator-based DEP (iDEP) provides an attractive alternative to conventional electrode-based systems; in iDEP, insulating structures are used to generate nonuniform electric fields, resulting in simpler and more robust devices. Despite the rapid development of iDEP microdevices for applications with cells, the fundamentals behind the dielectrophoretic behavior of cells has not been fully elucidated. Understanding the theory behind iDEP is necessary to continue the progress in this field. This work presents the manipulation and separation of bacterial and yeast cells with iDEP. A computational model in COMSOL Multiphysics was employed to predict the effect of direct current-iDEP on cells suspended in a microchannel containing an array of insulating structures. The model allowed predicting particle behavior, pathlines and the regions where dielectrophoretic immobilization should occur. Experimental work was performed at the same operating conditions employed with the model and results were compared, obtaining good agreement. This is the first report on the mathematical modeling of the dielectrophoretic response of yeast and bacterial cells in a DC-iDEP microdevice.  相似文献   

8.
In a microbiological device, cell or particle manipulation and characterization require the use of electric field on different electrodes in several configurations and shapes. To efficiently design microelectrodes within a microfluidic channel for dielectrophoresis focusing, manipulation and characterization of cells, the designer will seek the exact distribution of the electric potential, electric field and hence dielectrophoresis force exerted on the cell within the microdevice. In this paper we describe the approach attaining the analytical solution of the dielectrophoretic force expression within a microchannel with parallel facing same size electrodes present on the two faces of channel substrates, with opposite voltages on the pair electrodes. Simple Fourier series mathematical expressions are derived for electric potential, electric field and dielectric force between two distant finite‐size electrodes. Excellent agreement is found by comparing the analytical results calculated using MATLAB? with numerical ones obtained by Comsol. This analytical result can help the designer to perform simple design parametric analysis. Bio‐microdevices are also designed and fabricated to illustrate the theoretical solution results with the experimental data. Experiments with red blood cells show the dielectrophoretic force contour plots of the analytical data matched to the experimental results.  相似文献   

9.
Several cell-based biological applications in microfluidic systems require simultaneous high-throughput and individual handling of cells or other bioparticles. Available chip-based tools for contactless manipulation are designed for either high-precision handling of individual particles, or high-throughput handling of ensembles of particles. In order to simultaneously perform both, we have combined two manipulation technologies based on ultrasonic standing waves (USWs) and dielectrophoresis (DEP) in a microfluidic chip. The principle is based on the competition between long-range ultrasonic forces, short-range dielectrophoretic forces and viscous drag forces from the fluid flow. The ultrasound is coupled into the microchannel resonator by an external transducer with a refractive element placed on top of the chip, thereby allowing transmission light microscopy to continuously monitor the biological process. The DEP manipulation is generated by an electric field between co-planar microelectrodes placed on the bottom surface of the fluid channel. We demonstrate flexible and gentle elementary manipulation functions by the use of USWs and linear or curved DEP deflector elements that can be used in high-throughput biotechnology applications of individual cells.  相似文献   

10.
We have used diffusive mixing and dielectrophoretic trapping to lyse Escherichia coli cells in a microfabricated environment and trap the E. coli chromosome. We characterize the conditions needed for efficient lysis of the cells, and conditions needed for the dielectrophoretic trapping of the chromatin without the trapping of cytoplasmic proteins.  相似文献   

11.
The design and fabrication of a self‐digitization dielectrophoretic (SD‐DEP) chip with simple components for single‐cell manipulation and downstream nucleic acid analysis is presented. The device employed the traditional DEP and insulator DEP to create the local electric field that is tailored to approximately the size of single cells, enabling highly efficient single‐cell capture. The multistep procedures of cell manipulation, compartmentalization, lysis, and analysis were performed in the integrated microdevice, consuming minimal reagents, minimizing contamination, decreasing lysate dilution, and increasing assay sensitivity. The platform developed here could be a promising and powerful tool in single‐cell research for precise medicine.  相似文献   

12.
The design and fabrication of a self‐digitization dielectrophoretic (SD‐DEP) chip with simple components for single‐cell manipulation and downstream nucleic acid analysis is presented. The device employed the traditional DEP and insulator DEP to create the local electric field that is tailored to approximately the size of single cells, enabling highly efficient single‐cell capture. The multistep procedures of cell manipulation, compartmentalization, lysis, and analysis were performed in the integrated microdevice, consuming minimal reagents, minimizing contamination, decreasing lysate dilution, and increasing assay sensitivity. The platform developed here could be a promising and powerful tool in single‐cell research for precise medicine.  相似文献   

13.
Urdaneta M  Smela E 《Electrophoresis》2007,28(18):3145-3155
A novel method of modeling multiple frequency dielectrophoresis (MFDEP) is introduced based on the concept of an effective Clausius-Mossotti factor, CM(eff), for a particle that is exposed to electrical fields of different frequencies, coming either from one or multiple pairs of electrodes. This analysis clearly illustrates how adding frequencies adds control parameters, up to two additional parameters per frequency. As a result, MFDEP can be used for a wide variety of applications, including separating particles with very similar Clausius-Mossotti spectra, trapping multiple groups of cells simultaneously, and cancelling unwanted dielectrophoretic traps. Illustrating the modeling approach, we determine the CM(eff)s for live and dead yeast cells, and then predict their equilibrium distribution on a three-electrode configuration, with two electrodes at different frequencies and the third electrode at ground. This prediction is validated experimentally, using MFDEP to selectively attract live cells to one location and dead cells to another, trapping both. These results demonstrate that the use of multiple frequencies for the manipulation of particles can enhance the performance of dielectrophoretic devices, not only for sorting, but also for such applications as patterning cells in close proximity for the formation of cell consortia.  相似文献   

14.
A novel scanning probe microscopy technique has allowed dielectrophoretic force imaging with nanoscale spatial resolution. Dielectrophoresis (DEP) traditionally describes the mobility of polarizable particles in inhomogeneous alternating current (ac) electric fields. Integrating DEP with atomic force microscopy allows for noncontact imaging with the image contrast related to the local electric polarizability. By tuning the ac frequency, dielectric spectroscopy can be performed at solid/liquid interfaces with high spatial resolution. In studies of cells, the frequency-dependent dielectrophoretic force is sensitive to biologically relevant electrical properties, including local membrane capacitance and ion mobility. Consequently, dielectrophoretic force microscopy is well suited for in vitro noncontact scanning probe microscopy of biological systems.  相似文献   

15.
Microsample preparation by dielectrophoresis: isolation of malaria   总被引:1,自引:0,他引:1  
An important enabling factor for realising integrated micro fluidic analysis instruments for medical diagnostics purposes is front-end sample preparation. Dielectrophoresis is a method that offers great potential for cell discrimination and isolation for sample processing, and here we have applied it to the problem of isolating malaria-infected cells from blood. During development of the malarial pathogen, Plasmodium falciparum, increases occur in the ionic permeability of the plasma membrane of infected erythrocytes. When challenged by suspension in a low conductivity medium, infected cells lose internal ions while uninfected cells retain them. The resultant dielectric differences between infected and uninfected cells were exploited by dielectrophoretic manipulation in spatially inhomogeneous, travelling electrical fields produced by two types of microelectrode arrays. Parasitised cells of ring form or later stage from cultures and clinical specimens were isolated by steric dielectric field-flow-fractionation, focused at the centre of a spiral electrode array, and identified and counted. The dielectrophoretic methods require only a few micro litres of blood, and should be applicable to the production of small, low-cost automated devices for assessing parasite concentrations with potential applicability to drug sensitivity studies and the diagnosis of malaria. By simple adjustment of the electrical field parameters, other cell subpopulations that characterise disease, such as residual cancer cells in blood, can be similarly isolated and analysed.  相似文献   

16.
Introduction Gastriccancerisoneofthemostcommonlyen counteredmalignantdiseasesworldwide,especiallyin AsiaandAfrica[1].Thecombinationofoperation,chemotherapyandradiotherapyisusedfortreatinggas triccarcinoma.However,the5yearsurvivalrateof patientsofgastricca…  相似文献   

17.
The motion of a suspension of erythrocytes (red blood cells, RBCs) in response to a high-frequency alternating current (AC) field in a microfluidic device is examined with parallel and orthogonal electrode configurations to delineate the various fundamental driving forces. Cell repulsion from the platinum electrodes due to electrode polarization interacting with cell membrane polarizations is observed to be the strongest force acting on the particles in the first few seconds of field application. We exploit this strong repulsion to concentrate the bioparticles between the microelectrodes to amplify multiparticle aggregation phenomenon and dielectrophoretic (DEP) manipulation in a small and well-characterized region within the microfluidic device. Secondary motions include RBC pearl chain formation along field lines due to particle polarization followed by classical dielectrophoretic motion of the chains across field lines to regions of weaker field. These are driven by far weaker dipole-dipole and field-dipole interactions than the preliminary electrode repulsions. RBC chain length and total aggregated cells are presented for a variety of AC frequencies and are significantly amplified by the electrode repulsion. Motion of particles away from the polarized electrode is found to be species- and age-sensitive and can stand by itself as a promising identification and separation mechanism. In a 0.1 S/m isotonic phosphate buffer saline medium, we observe the largest cell mobilities at an optimal frequency of approximately 1 MHz, corresponding to the inverse diffusion time across the double layer of the cell and across the electrode's polarized layer. This suggests that the dielectric responses of both particles and electrodes in the low MHz frequency range are mostly determined by normal electromigration of ions from the bulk to their interfaces. Sensitivity to RBC age and species suggests that the surface proteins and membrane ion channels can affect the capacitance of the interface to accommodate the ions from the bulk. Such surface ion accumulation and polarization mechanisms are different from the classical dielectric theories. The resonant frequency of electrode polarization at around 1 MHz falls between positive and negative dielectrophoretic resonant frequency peaks - suggesting that the double-layer polarization mechanism is a distinct and potentially important bioparticle manipulation tool.  相似文献   

18.
We describe a multi-purpose platform for the three-dimensional cultivation of tissues. The device is composed of polymer chips featuring a microstructured area of 1-2 cm(2). The chip is constructed either as a grid of micro-containers measuring 120-300 x 300 x 300 microm (h x l x w), or as an array of round recesses (300 microm diameter, 300 microm deep). The micro-containers may be separately equipped with addressable 3D-micro-electrodes, which allow for electrical stimulation of excitable cells and on-site measurements of electrochemically accessible parameters. The system is applicable for the cultivation of high cell densities of up to 8 x 10(6) cells and, because of the rectangular grid layout, allows the automated microscopical analysis of cultivated cells. More than 1000 micro-containers enable the parallel analysis of different parameters under superfusion/perfusion conditions. Using different polymer chips in combination with various types of bioreactors we demonstrated the principal suitability of the chip-based bioreactor for tissue culture applications. Primary and established cell lines have been successfully cultivated and analysed for functional properties. When cells were cultured in non-perfused chips, over time a considerable degree of apoptosis could be observed indicating the need for an active perfusion. The system presented here has also been applied for the differentiation analysis of pluripotent embryonic stem cells and may be suitable for the analysis of the stem cell niche.  相似文献   

19.
The dielectrophoretic (DEP) behavior of individual yeast cells (5-7 microm in diameter) in aqueous media was observed in a fabricated planar quadrupole microelectrode with a working area of 100 microm in diameter by an optical microscope. The yeast cells migrated in the radial direction in the working area. The DEP velocity of the cells increased as they approached the electrode. The DEP trajectory of the cells was analyzed with a theoretical equation derived previously, and the dielectrophoretic mobility was determined. The dielectrophoretic mobility was found to be affected by the viability of cells, the conductivity of the medium, and the binding of lectin protein (concanavalin A) to the cell surface. These DEP behaviors were analyzed based on the permittivities and conductivities of the cell interior and wall, and those of the medium.  相似文献   

20.
The present study demonstrates the manipulation of protein particles employing insulator-based dielectrophoresis (iDEP) and direct current (d.c.) electric fields. Fluorescently labeled bovine serum albumin (BSA) protein particles were concentrated inside a microchannel that contained an array of glass cylindrical insulating structures. d.c. electric fields were applied and the dielectrophoretic response of the particles was observed as a function of the suspending medium conductivity (25, 50 and 100muS/cm) and pH (8 and 9). It was shown that the magnitude of the applied electric field (700-1600V/cm) and suspending medium properties have a strong effect on the dielectrophoretic response of the protein particles. The results presented here are the first report on protein manipulation employing d.c.-iDEP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号