首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The solvation parameter model is used to characterize the retention properties of a cyanopropylsiloxanebonded, silica-based sorbent with methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as mobile phases. The system constants over the composition range 1 to 50 % (v/v) organic solvent indicate that retention occurs because of the relative ease of cavity formation in the solvated stationary phase compared to the same process in the predominantly aqueous mobile phase as well as from more favorable stationary phase interactions with solutes containing π- and n-electrons. The capacity of the solute for dipole-type interactions is not important whereas all hydrogen-bond-type interactions result in reduced retention. Graphing the system constants as a function of mobile phase composition provides a simple mechanism for interpreting the change in capacity of the chromatographic system for retention in terms of changes in the relative weighting of fundamental intermolecular interactions. A comparison is also made with the retention properties of an octadecylsiloxane-bonded, silica-based sorbent with 30 % (v/v) methanol in water as the mobile phase and the extraction characteristics of a porous polymer sorbent with 1 % (v/v) methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as the sample processing solvent. Changes in sorbent selectivity due to selective uptake of the processing solvent are much smaller for the cyanopropylsiloxane-bonded sorbent than the results found for a porous polymer sorbent.  相似文献   

2.
The characteristic kinetic and retention properties of a silica-based cyanopropylsiloxane-bonded sorbent for solid-phase extraction are described. Abraham′s solvation parameter model is used to characterize the contribution of individual intermolecular interactions to retention under liquid chromatographic and sample processing conditions with aqueous methanol mixtures as the mobile phase. The main features governing retention by the sorbent are the solute's size and hydrogen-bond basicity; interactions of a dipole type are not significant when aqueous methanol solutions are employed as the mobile phase. Compared to typical silica-based octadecylsioxane-bonded sorbents the greater difficulty of forming a cavity in the solvated cyanopropylsiloxane-bonded sorbent more than offsets the more favorable dipole-type and solute hydrogenbond base interactions of the cyanopropylsiloxane-bonded sorbent. It is shown that there are no practical circumstances for which a cyanopropylsiloxane-bonded sorbent would be more useful than a typical ODS sorbent for the isolation of organic non-electrolytes from water by solid-phase extraction.  相似文献   

3.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an ethyl-bridged, ocatadecylsiloxane-bonded superficially porous silica stationary phase (Kinetex EVO C18) for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not methanol–water mobile phase compositions. Compared with a superficially porous octadecylsiloxane-bonded silica stationary phase (Kinetex C18) with a similar morphology but different topology statistically significant differences in selectivity at the 95% confidence level are observed for neutral compounds that vary by size and hydrogen-bond basicity with other intermolecular interactions roughly similar. These selectivity differences are dampened with acetonitrile–water mobile phases, but are significant for methanol–water mobile phase compositions containing <30% (v/v) methanol. A comparison of a totally porous ethyl-bridged, octadecylsiloxane-bonded silica stationary phase (XBridge C18) with Kinetex EVO C18 indicated that they are effectively selectivity equivalent.  相似文献   

4.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an octylsiloxane-bonded (Kinetex C8) and diisobutyloctadecylsiloxane-bonded (Kinetex XB-C18) superficially porous silica stationary phases for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not for methanol–water mobile phases. Compared with an octadecylsiloxane-bonded silica stationary phase (Kinetex C18) retention is reduced due to a less favorable phase ratio for both the octylsiloxane-bonded and diisobutyloctadecylsiloxane-bonded silica stationary phases while selectivity differences are small and solvent dependent. Selectivity differences for neutral compounds are larger for methanol–water but significantly suppressed for acetonitrile–water mobile phases. The selectivity differences arise from small changes in all system constants with solute size and hydrogen-bond basicity being the most important due to their dominant contribution to the retention mechanism. Exchanging the octadecylsiloxane-bonded silica column for either the octylsiloxane-bonded or diisobutyloctadecylsiloxane-bonded silica column affords little scope for extending the selectivity space and is restricted to fine tuning of separations, and in some cases, to obtain faster separations due to a more favorable phase ratio. For weak bases larger differences in relative retention are expected with acetonitrile–water mobile phases on account of the additional cation exchange interactions possible that are absent for the octadecylsiloxane-bonded silica stationary phase.  相似文献   

5.
Summary The influence of acetonitrile, methanol and isopropanol as retention selectivily modifiers in reversed phase liquid chromatography on a poly(styrene-divinylbenzene) macroporous polymer sorbent (PLRP-S) is evaluated using the solvation parameter model. Retention results from a combination of adsorption and partitioning and is influenced by the equilibrium absorption of organic solvent by the polymer from the mobile phase. The sorption of solutes is dominated by the ease of cavity formation in or on the solvated sorbent, with a small contribution from lone pair-lone pair electron interactions. All polar interactions, such as dipole-type and hydrogenbond formation, are more favorable in the mobile phase and reduce retention. Changes in the uptake of organic solvent from the mobile phase affect kinetic properties of the column such as band broadening and porosity as well as retention. The PLRP-S solvated sorbent is suitable for solid-phase extraction and is more retentive than typical silica-based, bonded phase sorbents for extraction from water. As a surrogate system for estimating solute lipophilicity and biological activity through retention-property correlations it provides a poor fit for hydrogen-bond acid solutes and is too dipolar/polarizable to fit some models.  相似文献   

6.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on phenylhexylsiloxane- and pentafluorophenylpropylsiloxane-bonded superficially porous silica stationary phases (Kinetex Phenyl-Hexyl and Kinetex F5) for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation exchange) are important for the retention of weak bases for acetonitrile–water mobile phases, but virtually absent for the same compounds for methanol–water mobile phases. The selectivity of the Kinetex Phenyl-Hexyl stationary phase for small neutral compounds is similar to an octadecylsiloxane-bonded silica stationary phase with similar morphology Kinetex C-18 for both methanol–water and acetonitrile–water mobile phase compositions. The Kinetex Phenyl-Hexyl and XBridge Phenyl stationary phases with the same topology but different morphology are selectivity equivalent, confirming that solvation of the interphase region can be effective at dampening selectivity differences for modern stationary phases. Small selectivity differences observed for XTerra Phenyl (different morphology and topology) confirm previous reports that the length and type of space arm for phenylalkylsiloxane-bonded silica stationary phases can result in small changes in selectivity. The pentafluorophenylpropylsiloxane-bonded silica stationary phase (Kinetex F5) has similar separation properties to the phenylhexylsiloxane-bonded silica stationary phases, but is not selectivity equivalent. However, for method development purposes, the scope to vary separations from an octadecylsiloxane-bonded silica stationary phase (Kinetex C-18) to “phenyl phase” of the types studied here is limited for small neutral compounds. In addition, selectivity differences for the above stationary phases are enhanced by methanol–water and largely suppressed by acetonitrile–water mobile phases. For bases, larger selectivity differences are possible for the above stationary phases if electrostatic interactions are exploited, especially for acetonitrile-containing mobile phases.  相似文献   

7.
The effect of different modifiers in subcritical fluid chromatography (SubFC) on interactions between solute and porous graphitic carbon (PGC) and between solute and carbon dioxide-modifier mobile phases was studied by the use of linear solvation energy relationships (LSERs). This study was performed to allow efficient optimization of the composition of the carbon dioxide-modifier mobile phase in regard of the chemical nature of the solutes to be separated. With all modifiers tested (methanol, ethanol, n-propanol, isopropanol, acetonitrile, tetrahydrofuran and hexane), the solute/stationary phase interactions are greater than the solute/mobile phase ones. Dispersion interactions and charge transfer between electron donor solute and electron acceptor PGC mainly explain the retention on this surface, whatever the modifier. These interactions are quite constant over the range of modifier percentage studied (5-40%). For acidic compounds, the retention variation is mainly related to the change in the basic character of mobile and stationary phase due to the variation of modifier percentage. Changes in eluting strength are mostly related to adsorption of mobile phase onto the PGC with methanol and acetonitrile, and to the increase of dispersion interactions between the solute and the mobile phase for other modifiers. Relationships between varied selectivities and solvation parameter values have been studied and are discussed in this paper.  相似文献   

8.
9.
The solvation parameter model system constants and retention factors were used to interpret retention properties of 39 calibration compounds on a biphenylsiloxane-bonded stationary phase (Kinetex biphenyl) for acetone-water binary mobile phase systems containing 30–70% v/v. Variation in system constants, phase ratios, and retention factors of acetone-water binary mobile phases systems were compared with more commonly used acetonitrile and methanol mobile phase systems. Retention properties of acetone mobile phases on a Kinetex biphenyl column were more similar to that of acetonitrile than methanol mobile phases except with respect to selectivity equivalency. Importantly, selectivity differences arising between acetone and acetonitrile systems (the lower hydrogen-bond basicity of acetone-water mobile phases and differences in hydrogen-bond acidity, cavity formation and dispersion interactions) could be exploited in reversed-phase liquid chromatography method development on a Kinetex biphenyl stationary phase.  相似文献   

10.
The solvation parameter model was used in this study to investigate various intermolecular interactions that influence retention on the standard C18 stationary phase for the solvent system acetonitrile:methanol (ACN:MeOH, 1:1). In comparison to the organic mobile phase modifiers acetonitrile, acetone, methanol, 2-propanol, and tetrahydrofuran, the solvent strength for the ACN:MeOH (1:1) solvent system was evaluated. To facilitate the interpretation of various intermolecular interactions that contribute to retention on a standard C18 stationary phase for the solvent system ACN:MeOH (1:1), system maps were constructed and compared with those of acetone, tetrahydrofuran, acetonitrile, 2-propanol, and methanol. The solvation parameter models were constructed for the ternary solvent system ACN:MeOH (1:1)-water, and in the models constructed, the coefficient of determination values were from 0.998 to 0.999, the Fisher statistic values for the models were from 1687 to 4015, and the standard error of the estimate values ranged from 0.022 to 0.029. The solvent system ACN:MeOH (1:1) has retention properties more similar to methanol than acetonitrile, indicating methanol's influence is more dominant.  相似文献   

11.
The retention of aromatic hydrocarbons with polar groups has been correlated as log k1 versus log k2 for reversed-phase high-performance liquid chromatography systems with different binary aqueous mobile phases containing methanol, acetonitrile or tetrahydrofuran as modifiers. Distinct changes in separation selectivity have been observed between tetrahydrofuran and acetonitrile or methanol systems. Methanol and acetonitrile systems show lower diversity of separation selectivity. The changes in retention and selectivity of aromatic hydrocarbons with various polar groups between any two chromatographic systems with binary aqueous eluents (tetrahydrofuran vs. acetonitrile, tetrahydrofuran vs. methanol and methanol vs. acetonitrile) have been interpreted in terms of molecular interactions of the solute with especially one component of the stationary phase region, i.e. extracted modifier, and stationary phase ordering. The ordering of the stationary phase region caused by modifier type influences the chromatographic selectivity of solutes with different molecular shape.  相似文献   

12.
The retention behavior of methoxy-substituted p-benzoquinones and the corresponding hydroquinones in reversed-phase chromatography was examined on octylsilica and two octadecylsilica stationary phases and with five hydroorganic mobile phases containing acetonitrile, methanol or tetrahydrofuran and additionally in most cases (NH3OH)3PO4 used as a reducing and buffering agent. The retention order of benzoquinones and hydroquinones was the same on each stationary phase with either methanol or acetonitrile as the organic modifier. On the other hand, minor differences in the retention order were observed with the various stationary phases. In all cases, satisfactory quantitative structure-retention relationships (QSRRs) were found and the data suggest that the differences in the retention behaviour of octadecylsilicas used in this study are silanophilic interactions which, together with solvophobic interaction contribute to the retention of these eluites. Further analysis showed that QSRRs of sterically crowded molecules must take into account reduced surface area available for binding. The retention data obtained with use of aqueous tetrahydrofuran as mobile phase failed to give rise to satisfactory QSRRs. This was attributed to selective solvation of eluite by tetrahydrofuran and/or nearly equipotent binding of eluite and tetrahydrofuran to stationary phase.  相似文献   

13.
The effect of varying mobile phase composition across a ternary space between two binary compositions is examined, on four different reversed-phase stationary phases. Examined stationary phases included endcapped C8 and C18, as well as a phenyl phase and a C18 phase with an embedded polar group (EPG). Mobile phases consisting of 50% water and various fractions of methanol and acetonitrile were evaluated. Retention thermodynamics are assessed via use of the van’t Hoff relationship, and retention mechanism is characterized via LSER analysis, as mobile phase composition was varied from 50/50/0 water/methanol/acetonitrile to 50/0/50 water/methanol acetonitrile. As expected, as the fraction of acetonitrile increases in the mobile phase, retention decreases. In most cases, the driving force for this decrease in retention is a reduction of the enthalpic contribution to retention. The entropic contribution to retention actually increases with acetonitrile content, but not enough to overcome the reduction in the enthalpic contribution. In a similar fashion, as methanol is replaced with acetonitrile, the v, e, and a LSER system constants change to favor elution, while the s and c constants change to favor retention. The b system constant did not show a monotonic change with mobile phase composition. Overall changes in retention across the mobile phase composition range varied, based on the identity of the stationary phase and the composition of the mobile phase.  相似文献   

14.
Molecular simulations of water/acetonitrile and water/methanol mobile phases in contact with a C(18) stationary phase were carried out to examine the molecular-level effects of mobile phase composition on structure and retention in reversed-phase liquid chromatography. The simulations indicate that increases in the fraction of organic modifier increase the amount of solvent penetration into the stationary phase and that this intercalated solvent increases chain alignment. This effect is slightly more apparent for acetonitrile containing solvents. The retention mechanism of alkane solutes showed contributions from both partitioning and adsorption. Despite changes in chain structure and solvation, the molecular mechanism of retention for alkane solutes was not affected by solvent composition. The mechanism of retention for alcohol solutes was primarily adsorption at the interface between the mobile and stationary phase, but there were also contributions from interactions with surface silanols. The interaction between the solute and surface silanols become very important at high concentrations of acetonitrile.  相似文献   

15.
从统计热力学方法推导的溶质保留规律及其相关参数与分子结构之间的关系式出发,探讨了16种多环芳烃在甲醇/水、乙腈/水、异丙醇/乙腈3种二元溶剂体系下选择性的差异,为确立复杂化合物分离的溶剂选择原则奠定了基础。  相似文献   

16.
The solvation parameter model is used to elucidate the retention mechanism of neutral compounds on the pentafluorophenylpropylsiloxane-bonded silica stationary phase (Discovery HS F5) with methanol-water and acetonitrile-water mobile phases containing from 10 to 70% (v/v) organic solvent. The dominant factors that increase retention are solute size and electron lone pair interactions while polar interactions reduce retention. A comparison of the retention mechanism with an octadecylsiloxane-bonded silica stationary phase based on the same silica substrate and with a similar bonding density (Discovery HS C18) provides additional insights into selectivity differences for the two types of stationary phase. The methanol-water solvated pentafluorophenylpropylsiloxane-bonded silica stationary phase is more cohesive and/or has weaker dispersion interactions and is more dipolar/polarizable than the octadecylsiloxane-bonded silica stationary phase. Differences in hydrogen-bonding interactions contribute little to relative retention differences. For mobile phases containing more than 30% (v/v) acetonitrile selectivity differences for the pentafluorophenylpropylsiloxane-bonded and octadecylsiloxane-bonded silica stationary phases are no more than modest with differences in hydrogen-bond acidity of greater importance than observed for methanol-water. Below 30% (v/v) acetonitrile selectivity differences are more marked owing to incomplete wetting of the octadecylsiloxane-bonded silica stationary phase at low volume fractions of acetonitrile that are not apparent for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. Steric repulsion affects a wider range of compounds on the octadecylsiloxane-bonded than pentafluorophenylpropylsiloxane-bonded silica stationary phase with methanol mobile phases resulting in additional selectivity differences than predicted by the solvation parameter model. Electrostatic interactions with weak bases were unimportant for methanol-water mobile phase compositions in contrast to acetonitrile-water where ion-exchange behavior is enhanced, especially for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. The above results are compatible with a phenomenological interpretation of stationary phase conformations using the haystack, surface accessibility, and hydro-linked proton conduit models.  相似文献   

17.
Effects of mobile-phase variations on the chromatographic separation on amino-bonded silica column in hydrophilic interaction chromatography (HILIC) were investigated for four zwitterionic tetracyclines (TCs): oxytetracycline, doxycycline, chlortetracycline, and tetracycline. A mixed-mode retention mechanism composed of partitioning, adsorption, and ion exchange interactions was proposed for the amino HILIC retention process. Buffer type and pH significantly influenced the retention of TCs, but showed similar separation selectivity for the tested analytes. Experiments varying buffer salt concentration and pH demonstrated the presence of ion exchange interactions in TCs retention. The type and concentration of organic modifier also affected the retention and selectivity of the analytes, providing direct evidence supporting the Alpert retention model for HILIC. The retention time of the analytes increased in the following order of organic modifiers: tetrahydrofuran < methanol < isopropanol < acetonitrile. The linear relationships of logk' versus %water (v/v) curve and logk' versus logarithm of %water (v/v) in the mobile phase indicated that TCs separation on the amino phase was controlled by partitioning and adsorption. The developed method was successfully utilized in the detection of TCs in both river water and wastewater samples using solid-phase extraction (SPE) for sample cleanup.  相似文献   

18.
Plots of the retention factor against mobile phase composition were used to organize a varied group of solutes into three categories according to their retention mechanism on an octadecylsiloxane-bonded silica stationary phase HyPURITY C18 with methanol-water and acetonitrile-water mobile phase compositions containing 10-70% (v/v) organic solvent. The solutes in category 1 could be fit to a general retention model, Eq. (2), and exhibited normal retention behavior for the full composition range. The solutes in category 2 exhibited normal retention behavior at high organic solvent composition with a discontinuity at low organic solvent compositions. The solutes in category 3 exhibited a pronounced step or plateau in the middle region of the retention plots with a retention mechanism similar to category 1 solutes at mobile phase compositions after the discontinuity and a different retention mechanism before the discontinuity. Selecting solutes and appropriate composition ranges from the three categories where a single retention mechanism was operative allowed modeling of the experimental retention factors using the solvation parameter model. These models were then used to predict retention factors for solutes not included in the models. The overwhelming number of residual values [log k (experimental) - log k (model predicted)] were negative and could be explained by contributions from steric repulsion, defined as the inability of the solute to insert itself fully into the stationary phase because of its bulkiness (i.e., volume and/or shape). Steric repulsion is shown to strongly depend on the mobile phase composition and was more significant for mobile phases with a low volume fraction of organic solvent in general and for mobile phases containing methanol rather than acetonitrile. For mobile phases containing less than about 20 % (v/v) organic solvent the mobile phase was unable to completely wet the stationary phase resulting in a significant change in the phase ratio and for acetonitrile (but less so methanol) changes in the solvation environment indicated by a discontinuity in the system maps.  相似文献   

19.
The present paper discusses the tendencies in the retention changes of a diverse set of organic model compounds on HPLC C18 stationary phases in aqueous ternary eluent mixtures containing tetrahydrofuran or 1,4-dioxane, and one short chain aliphatic alcohol (ethanol, n-propanol or isopropanol). The set of compounds consisted of steroid and non-steroid molecules with different hydrogen bond donor and/or acceptor abilities. Every eluent mixture contained 75 V/V% water and 25 V/V% organic solvent(s). The composition of the mixture was changed in 5 V/V% steps, starting with the binary alcohol–water mixtures and finishing with the binary ether–water mixtures. The results show clearly the dependency of retention times on the eluent composition, the size of the molecules, and the occurence of the hydrogen bond donor/acceptor groups. The isopropanol–tetrahydrofurane–water mixtures resulted in selective changes in the retention times of the compounds with acidic groups or with other non-acidic OH or NH protons in the neighborhood of electron-withdrawing groups. Every compound has shown elevated retention times in the isopropanol–dioxane–water, n-propanol–tetrahydrofuran–water, or n-propanol–dioxane–water mixtures. Clear trends could not be observed in the eluents with ethanol. The probable reason for the retention enhancement is the adsorption of the organic components of the mobile phase on the surface of the stationary phase. The different effects of the alcohols may originate from the interaction of their varying aliphatic alkyl chains with the C18 chains. This phenomenon may result in different availability of the C18 chains for dioxane, tetrahydrofuran and the model compounds.  相似文献   

20.
T. Kowalska 《Chromatographia》1990,29(7-8):389-394
Summary In our previous publication we have introduced a new model of solute retention in RP-HPLC systems with ternary mobile phases of the B+AB1+AB2 type (B: acetonitrile or tetrahydrofuran; AB1: methanol; AB2: water). That model proposed no stoichiometric differentiation between acetonitrile and tetrahydrofuran, alternatively present in the solvent system; moreover, it made some very rough assumptions only as to the intermolecular interactions among the mobile phase constituents.This paper introduces a significant refinement to the already established retention model, which is based on the simple quantitative relationships between acetonitrile and tetrahydrofuran, and the remaining components of the ternary liquid system. The refined model is tested with same experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号