首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field-effect transistors (FETs) have been fabricated using double-walled carbon nanotubes (DWCNTs), and electrical transport measurements have been carried out on 125 DWCNT FETs. Among these devices, 52 were found to show basically semiconducting field-effect characteristics, 44 show metallic characteristics, and 29 show neither pure semiconducting nor metallic characteristics. These 3 distinct types of field-effect characteristics were identified as resulting from the semiconducting (S)-S, metallic (M)-M or M-S, and S-M combinations of the two shells of the DWCNT. While the S-S and M-M or M-S DWCNT devices exhibit similar field-effect characteristics to those by single-walled carbon nanotube (SWCNT) devices, the S-M device responds uniquely to the external gate voltage. In particular, it was found that free charges in the inner metallic shell may screen the outer semiconducting shell from the gate effect and that the screening is directly related to the intershell interaction, which increases with increasing temperature and tube diameter. The screening is disadvantageous to the performance of DWCNT FETs, and a similar effect is expected to occur in MWCNTs.  相似文献   

2.
The performance of microchip electrophoresis/electrochemistry system with carbon nanotube (CNT) film electrodes was studied. Electrocatalytic activities of different carbon materials (single-wall CNT (SWCNT), multiwall CNT (MWCNT), carbon powder) cast on different electrode substrates (glassy carbon (GC), gold, and platinum) were compared in a microfluidic setup and their performance as microchip electrochemical detectors was assessed. An MWCNT film on a GC electrode shows electrocatalytic effect toward oxidation of dopamine (E(1/2) shift of 0.09 V) and catechol (E(1/2) shift of 0.19 V) when compared to a bare GC electrode, while other CNT/carbon powder films on the GC electrode display negligible effects. Modification of a gold electrode by graphite powder results in a strong electrocatalytic effect toward oxidation of dopamine and catechol (E(1/2) shift of 0.14 and 0.11 V, respectively). A significant shift of the half-wave potentials to lower values also provide the MWCNT film (E(1/2) shift of 0.08 and 0.08 V for dopamine and catechol, respectively) and the SWCNT film (E(1/2) shift of 0.10 V for catechol) when compared to a bare gold electrode. A microfluidic device with a CNT film-modified detection electrode displays greatly improved separation resolution (R(s)) by a factor of two compared to a bare electrode, reflecting the electrocatalytic activity of CNT.  相似文献   

3.
We describe a graphene and single-walled carbon nanotube (SWCNT) composite film prepared by a blending process for use as electrodes in high energy density supercapacitors. Specific capacitances of 290.6 F g(-1) and 201.0 F g(-1) have been obtained for a single electrode in aqueous and organic electrolytes, respectively, using a more practical two-electrode testing system. In the organic electrolyte the energy density reached 62.8 Wh kg(-1) and the power density reached 58.5 kW kg(-1). The addition of single-walled carbon nanotubes raised the energy density by 23% and power density by 31% more than the graphene electrodes. The graphene/CNT electrodes exhibited an ultra-high energy density of 155.6 Wh kg(-1) in ionic liquid at room temperature. In addition, the specific capacitance increased by 29% after 1000 cycles in ionic liquid, indicating their excellent cyclicity. The SWCNTs acted as a conductive additive, spacer, and binder in the graphene/CNT supercapacitors. This work suggests that our graphene/CNT supercapacitors can be comparable to NiMH batteries in performance and are promising for applications in hybrid vehicles and electric vehicles.  相似文献   

4.
In this article, we investigate the effect of van der Waals force in zigzag carbon nanotubes (CNTs) including single-wall CNT (SWCNT) and double-walled CNT (DWCNT) structures with several interaction configurations. The solid-state density functional theory is employed to calculate the geometric optimization, normal mode frequencies, and IR and Raman spectra with the periodic boundary condition. For SWCNTs, we find that the Raman intensity is not affected by the tube diameter or the electronic structure. The IR absorption, however, increases with the tube diameter. We find that the close metallicity of the electronic structure has a significant impact on the IR simulations. When the van der Waals force is applied outside the CNTs at a distance longer than 3.0, the effect on Raman spectra is minimal but some effects can still be confirmed by IR absorption. When the van der Waals force acts inside the CNTs, the effect on the spectrum can be observed, especially at a distance of 2.8 Å, both IR and Raman can be significantly enhanced in many modes.  相似文献   

5.
The oxygen reduction reaction has been investigated on double-walled carbon nanotube (DWCNT) modified glassy carbon (GC) electrodes in acid and alkaline media using the rotating disk electrode (RDE) method. The surface morphology and composition of DWCNT samples was examined by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Aqueous suspensions of DWCNTs were prepared using Nafion and non-ionic surfactant Triton X-100 as dispersing agents. The RDE results indicated that the DWCNT modified GC electrodes are active catalysts for oxygen reduction in alkaline solution. In acid media DWCNT/GC electrodes possess poor electrocatalytic properties for O2 reduction which indicates lack of metal catalyst impurities in the DWCNT material studied. The oxygen reduction behaviour of DWCNTs was similar to that of multi-walled carbon nanotubes (MWCNTs) observed in our previous studies.  相似文献   

6.
The electronic transport properties of an all-carbon mechanically controlled molecular device based on carbon nanotubes are studied using non-equilibrium Green's function in combination with density functional theory. A segment of (10,0) single-walled carbon nanutube (SWCNT) is placed concentrically outside a (5,0) SWCNT, namely, a (5,0)@(10,0) double-walled carbon nanotube (DWCNT). It is found that the position, orientation and length scaling of the (10,0) SWCNT have crucial effects on the electronic transport properties of the system. When the (10,0) SWCNT is mechanically pushed forward along the axial direction, alternation of on/off switching behavior under low bias and negative differential resistance behavior under high bias are observed. Significant changes in the electronic transport properties arise when rotating the (10,0) SWCNT around the common axis or adding carbon atom layers in the transport direction. Theoretical explanations are proposed for these phenomena.  相似文献   

7.
A novel method is presented to monitor carbon nanotube (CNT) growth by formation of CNT stacks. By this process, CNT growth kinetics are investigated for densely packed CNT films in the gas-diffusion-controlled regime. CNT stacks are fabricated by water-assisted selective etching and the cyclic introduction of ethylene into the chemical vapor deposition (CVD) reactor. Formation of the CNT stacks allows monitoring of the CNT growth evolution, thereby providing insight into the growth kinetics. A parabolic increase of CNT length versus time is observed, indicating a gas-diffusion-controlled growth mode. The densely packed, well-aligned CNT films act as porous barrier layers to the diffusion of ethylene precursor to the catalyst nanoparticles, since these films form via a base-growth mode under the conditions invoked in our system. By adjustment of CNT growth time and temperature, a quantitative time-evolution analysis is performed to investigate the CNT growth model and extract the gas precursor mass transfer coefficient in the CNT films. The self-diffusion of gases in the densely packed CNT films is found to be Knudsen diffusion with a diffusion coefficient on the order of 10(-4) cm(2)/s.  相似文献   

8.
The AB‐monomer, 3,4‐diaminobenzoic acid dihydrochloride, was recrystallized from an aqueous hydrochloric acid solution and used to synthesize high‐molecular‐weight poly(2,5‐benzimidazole) (ABPBI). ABPBI/carbon nanotube (CNT) composites were prepared via in situ polymerization of the AB‐monomer in the presence of single‐walled carbon nanotube (SWCNT) or multiwalled carbon nanotube (MWCNT) in a mildly acidic polyphosphoric acid. The ABPBI/SWCNT and ABPBI/MWCNT composites displayed good solubility in methanesulfonic acid and thus, uniform films could be cast. The morphology of these composite films was studied by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The results showed that both types of CNTs were uniformly dispersed into the ABPBI matrix. Tensile properties of the composite films were significantly improved when compared with ABPBI, and their toughness (~200 MPa) was close to the nature's toughest spider silk (~215 MPa). The electrical conductivities of ABPBI/SWCNT and ABPBI/MWCNT composite films were 9.10 × 10?5 and 2.53 × 10?1 S/cm, respectively, whereas that of ABPBI film was 4.81 × 10?6 S/cm. These values are ~19 and 52,700 times enhanced by the presence of SWCNT and MWCNT, respectively. Finally, without acid impregnation, the ABPBI film was nonconducting while the SWCNT‐ and MWCNT‐based composites were proton conducting with maximum conductivities of 0.018 and 0.017 S/cm, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1067–1078, 2010  相似文献   

9.
The potential biomedical application of carbon nanotubes (CNTs) pertinent to drug delivery is highly manifested considering the remarkable electronic and structural properties exhibited by CNT. To simulate the interaction of nanomaterials with biomolecular systems, we have performed density functional calculations on the interaction of pyrazinamide (PZA) drug with functionalized single-wall CNT (fSWCNT) as a function of nanotube chirality and length using two different approaches of covalent functionalization, followed by docking simulation of fSWCNT with pncA protein. The functionalization of pristine SWCNT facilitates in enhancing the reactivity of the nanotubes and formation of such type of nanotube-drug conjugate is thermodynamically feasible. Docking studies predict the plausible binding mechanism and suggests that PZA loaded fSWCNT facilitates in the target specific binding of PZA within the protein following a lock and key mechanism. Interestingly, no major structural deformation in the protein was observed after binding with CNT and the interaction between ligand and receptor is mainly hydrophobic in nature. We anticipate that these findings may provide new routes towards the drug delivery mechanism by CNTs with long term practical implications in tuberculosis chemotherapy.  相似文献   

10.
We performed molecular dynamics simulation of double walled carbon nanotube (DWCNT) oscillators under constant energy and constant temperatures with various commensurations and nanotube lengths. We clarify and resolve questions and differences raised by previous simulation results of similar systems. At constant energy, sustained oscillation is available for a wide range of initial temperatures. But low initial temperature is advantageous for DWCNTs to sustain oscillation under constant energy. We observed sustained oscillation at constant energy for both commensurate and incommensurate DWCNTs. On the other hand, under constant temperatures, both high and low temperatures are disadvantageous to sustain DWCNT oscillations. At constant low temperature, neither commensurate nor incommensurate DWCNTs can maintain oscillation. At appropriate constant temperatures, the oscillatory behavior of incommensurate nanotubes is much more sustained than that of commensurate tubes. The oscillatory frequency of DWCNTs depends significantly on the length of tubes. The initial oscillatory frequency is inversely proportional to the DWCNT lengths. The oscillation frequency of DWCNTs is insensitive to the initial temperatures at constant energy, but slightly dependent on the temperature at constant temperatures.  相似文献   

11.
Electron donor-acceptor hybrids based on single wall carbon nanotubes (SWCNT) are one of the most promising functional structures that are currently developed in the emerging areas of energy conversion schemes and molecular electronics. As a suitable electron donor, π-extended tetrathiafulvalene (exTTF) stands out owing to its recognition of SWCNT through π-π stacking and electron donor-acceptor interactions. Herein, we explore the shape and electronic complementarity between different types of carbon nanotubes (CNT) and a tweezers-shaped molecule endowed with two exTTFs in water. The efficient electronic communication between semiconducting SWCNT/multiwall carbon nanotubes (MWCNT), on one hand, and the water-soluble exTTF nanotweezers 8, on the other hand, has been demonstrated in the ground and excited state by using steady-state as well as time-resolved spectroscopies, which were further complemented by microscopy. Importantly, appreciable electronic communication results in the electronic ground state having a shift of electron density, that is, from exTTFs to CNT, and in the electronic excited state having a full separation of electron density, that is oxidized exTTF and reduced CNT. Lifetimes in the range of several hundred picoseconds, which were observed for the corresponding electron transfer products upon light irradiation, tend to be appreciably longer in MWCNT/8 than in SWCNT/8.  相似文献   

12.
Compliant electrodes to replace conventional metal electrodes have been required for many actuators to relieve the constraint on the electroactive layer. Many conducting polymers have been proposed for the alternative electrodes, but they still have a problem of poor thermal stability. This article reports a novel all- organic actuator with single wall carbon nanotube (SWCNT) films as an alternative electrode. The SWCNT film was obtained by filtering a SWCNT solution through an anodized alumina membrane. The conductivity of the SWCNT film was about 280 S/cm. The performance of the SWCNT film electrode was characterized by measuring the dielectric properties of NASA Langley Research Center – Electroactive Polymer (LaRC-EAP) sandwiched by the SWCNT electrodes over a broad range of temperature (from 25 to 280 °C) and frequency (from 1 kHz to 1 MHz). The all-organic actuator with the SWCNT electrodes showed a larger electric field-induced strain than that with metal electrodes, under identical measurement conditions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2532–2538, 2008  相似文献   

13.
Initiated chemical vapor deposition (iCVD) has been shown to be suitable for blanketing surfaces with thin polymer coatings of ≈1–2 nm and greater. In this work, iCVD coatings of polytetrafluoroethylene (PTFE) deposited on carbon nanotube (CNT)‐based surfaces show CNT‐templated PTFE single crystal growth. While the coating forms disoriented agglomerates when deposited on an amorphous carbon background, “shish‐kebab” structures are observed when grown on single‐walled carbon nanotubes (SWCNT) as well as CNT buckypaper. It is shown that the shish‐kebab structure is composed of PTFE lamellae arranged with the chain backbones running parallel to the SWCNT axis. This result allows one to control not only the surface chemistry using PTFE but also the coating surface topology.  相似文献   

14.
In an effort to design efficient platform for siRNA delivery, we combine all atom classical and quantum simulations to study the binding of small interfering RNA (siRNA) by pristine single wall carbon nanotube (SWCNT). Our results show that siRNA strongly binds to SWCNT surface via unzipping its base-pairs and the propensity of unzipping increases with the increase in the diameter of the SWCNTs. The unzipping and subsequent wrapping events are initiated and driven by van der Waals interactions between the aromatic rings of siRNA nucleobases and the SWCNT surface. However, molecular dynamics (MD) simulations of double strand DNA (dsDNA) of the same sequence show that the dsDNA undergoes much less unzipping and wrapping on the SWCNT in the simulation time scale of 70 ns. This interesting difference is due to smaller interaction energy of thymidine of dsDNA with the SWCNT compared to that of uridine of siRNA, as calculated by dispersion corrected density functional theory (DFT) methods. After the optimal binding of siRNA to SWCNT, the complex is very stable which serves as one of the major mechanisms of siRNA delivery for biomedical applications. Since siRNA has to undergo unwinding process with the effect of RNA-induced silencing complex, our proposed delivery mechanism by SWCNT possesses potential advantages in achieving RNA interference.  相似文献   

15.
Carbon nanotube screen-printed electrochemical sensors   总被引:1,自引:0,他引:1  
Wang J  Musameh M 《The Analyst》2004,129(1):1-2
The fabrication, and evaluation of carbon-nanotube (CNT)-derived screen-printed (SP) electrochemical sensors based on a CNT ink are reported. The fabricated CNT strips combine the attractive advantages of CNT materials and disposable screen-printed electrodes. Such thick-film CNT sensors have a well-defined appearance, are mechanically stable, and exhibit high electrochemical reactivity.  相似文献   

16.
Development of quantum dot (QD) based device components requires controlled integration of QDs into different photonic and electronic materials. In this regard, introduction of methods for regular arrangement of QDs and investigation of properties of QD-based assemblies are important. In the current work we report (1) controlled conjugation of CdSe-ZnS QDs to sidewall-functionalized single-walled carbon nanotube (SWCNT) templates (2) and the effect of conjugation of QDs to SWCNT on the photoluminescence (PL) properties of QDs. We identified that PL intensity and lifetime of QDs are considerably reduced after conjugation to SWCNT. The origin of the quenching of the PL intensity and lifetime was discussed in terms of F?rster resonance energy transfer (FRET). FRET involves nonradiative transfer of energy from a photoexcited QD (energy donor) to a nearby SWCNT (energy acceptor) in the ground state. This was examined by varying the density of QDs on SWCNT and conjugating smaller and bigger QDs to the same SWCNT. We estimated the FRET efficiency in QD-SWCNT conjugates from the quenching of the PL intensity and lifetime and identified that FRET is independent of the density and type of QDs on SWCNT but inherent to QD-SWCNT conjugates.  相似文献   

17.
We describe the first usage of a double walled carbon nanotube (DWCNT) modified carbon paste electrode as biosensor transducer. Xanthine was chosen as a substrate for evaluation of the electrode performance. Proper amount of DWCNT and xanthine oxidase enzyme were mixed with proper amount of graphite and mineral oil for attaining the xanthine biosensor. Results were compared with previous work that includes multi-walled carbon nanotube and single-wall carbon nanotube based carbon paste electrode xanthine biosensors. A linearity was obtained in the concentration range between 2–50 μM xanthine under the response time of 150 s with the equation of y?=?0.0441x + 0.2013 and RSD value of 4.20%. This system was applied to the determination of xanthine in canned tuna fish samples and recovery was calculated as 99.20%?±?0.07.  相似文献   

18.
Using materials with high thermal conductivity is a matter of great concern in the field of thermal management. In this study, we present our experimental results on two-dimensional thermal conductivity of carbon nanotube (CNT) films obtained by using an optical method based on Raman spectroscopy. We use four kinds of CNTs in film preparation to investigate the effect of CNT type on heat spreading performance of CNT films. This first comparative study using the optical method shows that the arc-discharge single-walled carbon nanotubes yield the best heat spreading film. We also show that the Raman method renders reasonable thermal conductivity value as long as the sample is a transparent film by testing CNT films with various transmittance. This study provides useful information on characterization of thermal conduction in transparent CNT films and could be an important step toward high-performance carbon-based heat spreading films.  相似文献   

19.
Effective side wall functionalization of single-walled carbon nanotube (SWCNT) with 4-vinylaniline was carried out through solvent free functionalization. The functionalized SWCNT was characterized through FT-IR and NMR. Typical peaks to identify the functionalization were observed. Thermal analysis shows around 48% weight loss in functionalized SWCNT in comparison to the pure SWCNT. The ratio of disordered to order transition (ID/IG) in FT-Raman, indicated the generation of some surface defects due to functionalization. Near infrared spectrum of functionalized SWCNT also confirmed the functionalization of SWCNT. The polystyrene nanocomposite materials were prepared with functionalized SWCNT as fillers by solution casting from tetrahydrofuran. The functionalized SWCNT nanocomposite showed significant improvement in mechanical properties and electrical properties. The dispersibility of the carbon nanotube in the composite was investigated by using scanning electron microscopy.  相似文献   

20.
Carbon nanotube fiber microelectrodes   总被引:5,自引:0,他引:5  
Carbon nanotube (CNT) fibers have been used to fabricate microelectrodes with an attractive electrochemical behavior. By combining the advantages of CNT materials and fiber microelectrodes, the new material expands the scope of CNT-based electrochemical devices. The CNT fiber offers a marked decrease in the overvoltage for the NADH, dopamine, and hydrogen peroxide and circumvents NADH surface fouling effects. Heat treatment is shown to be extremely useful for activating the CNT fiber surfaces for electron transfer. SEM imaging and cyclic-voltammetric data indicate that the heat treatment leads to the removal of nonconducting residues and exposure of a "fresh" CNT surface. The new electrode material thus presents new opportunities for a wide range of electrochemical and analytical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号