首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
化学基元组学(chemomics)是与化学信息学、生物信息学、合成化学等学科相关的交叉学科.生物系统从内源性小分子(天然砌块)出发,通过酶催化的化学反应序列制造天然产物.生物系统通过化学反应和天然砌块向目标天然产物“砌入”一组原子,这样的一组原子称为化学基元(chemoyl).化学基元组(chemome)是生物组织中所含有的化学基元的全体.化学基元组学研究各种化学基元的结构、组装与演化的基本规律.在生存压力和繁衍需求的驱动下,生物系统已经进化出有效手段来合成天然产物以应付环境的变化,并产生了丰富多彩的生物和化学多样性.近年来,人们意识到药物创新的瓶颈之一是药物筛选资源的日益枯竭.化学基元组学可以解决这个瓶颈问题,它通过揭示生物系统制备化学多样性的规律,发展仿生合成方法制备类天然化合物库(quasi natural product libraries)以供药物筛选.本文综述了化学基元组学的主要研究内容及其在药物创新各领域中的潜在应用.  相似文献   

2.
Throughout the centuries, traditional Chinese medicine has been a rich resource in the development of new drugs. Modern drug discovery, which relies increasingly on automated high throughput screening and quick hit-to-lead development, however, is confronted with the challenges of the chemical complexity associated with natural products. New technologies for biological screening as well as library building are in great demand in order to meet the requirements. Here we review the developments in these techniques under the perspective of their applicability in natural product drug discovery. Methods in library building, component characterizing, biological evaluation, and other screening methods including NMR and X-ray diffraction are discussed.  相似文献   

3.
Numerous natural products possess ring systems and functionality for which Hajos–Parrish ketone isomers with a transposed methyl group (termed “iso‐Hajos–Parrish ketones”) would be of value. However, such building blocks have not been exploited to the same degree as the more typical Hajos–Parrish hydrindane. An efficient three‐step synthesis of such materials was fueled by a simple method for the rapid preparation of highly functionalized cyclopentenones, several of which are new chemical entities that would be challenging to access through other approaches. Furthermore, one iso‐Hajos–Parrish ketone was converted into two distinct natural product analogues and one natural product. As one indication of the value of these new building blocks, that latter target was obtained in 10 steps, having previously been accessed in 18 steps using the Hajos–Parrish ketone.  相似文献   

4.
Qi Li  Ian B. Seiple 《Tetrahedron》2019,75(24):3309-3318
Modular, fully synthetic routes to structurally complex natural products provide useful avenues to access chemical diversity. Herein we report a concise route to virginiamycin M2, a member of the group A streptogramin class of natural products that inhibits bacterial protein synthesis. Our approach features a longest linear sequence of six steps from 7 simple building blocks, and is the shortest and highest yielding synthesis of any member of the streptogramin class reported to date. We believe this route will enable access to unexplored structural diversity and may serve as a useful tool to improve the therapeutic potential of the streptogramin class of antibiotics.  相似文献   

5.
Natural product-like libraries represent an effort to combine the attractive features of natural products and combinatorial libraries for high-throughput screening. Three approaches to natural product-like library design are discussed: (1) Libraries based on core scaffolds from individual natural products, (2) libraries of diverse structures with general structural characteristics of natural products, and (3) libraries of diverse structures based on specific structural motifs from classes of natural products. Examples of successful applications in discovery screening are described for each category. These studies highlight the exciting potential of natural product-like libraries in both chemical biology and drug discovery.  相似文献   

6.
Enaminoketones and esters are gaining increased interest, particularly cyclic‐β‐enaminoesters, which are known as important intermediates for the synthesis of heterocycles and natural products, because the enantioselective preparation of highly functionalized compounds is of central importance in synthetic chemistry. Enaminones are versatile synthetic intermediates that combine the ambident nucleophilicity of enamines with the ambident eletrophilicity of enones. Enaminoketones and enaminonitriles have proven to be versatile building blocks for the synthesis of various heterocycles such as pyridine, pyrimidine and pyrrole deriva tives. Enaminones systems have “enone” character, and may act as acceptors in both 1,2 and 1,4‐additions. In this way the enaminone serves as a scaffold for annulation, and can gain access to systems such as pyrroles indolizidines, quinolizidines and perhydroindoles, all of which are common motifs in alkaloid structures. Enaminones are frequently employed as building blocks for the preparation of a variety of bicyclic compounds of biological interest and have been recently recognized as potential anticonvulsant compounds. Since a large number of developments in the use of enaminones in heterocyclic synthesis have occurred, a review of the recent developments in the synthetic approaches, covering the literature since 1995 until 2004, to these interesting molecules and their useful chemical transformations and biological activity can be considered of considerable value.  相似文献   

7.
The potential of natural products as sources for new drugs and lead structures is still largely unexplored and due to their unmatched structural diversity, secondary natural products continue to play a highly significant role in drug discovery. This article gives an overview on different strategies, chemical and biological methods as well as limiting problems for the search, screening, isolation and characterization of bioactive natural products from different sources. Ecological aspects and the importance of biodiversity and sustainable sourcing are also discussed.  相似文献   

8.
The study of biologically active natural products has resulted in seminal contributions to our understanding of living systems. In the case of electrophilic natural products, the covalent nature of their interaction has largely facilitated the identification of their biological binding partners. In this review, we provide a comprehensive compilation of electrophilic natural products from all major chemical classes together with their biological targets. Covering Michael acceptor systems, ring-strained compounds and other electrophiles, such as esters or carbamates, we highlight representative and instructive examples for over 20 electrophilic moieties. The fruitful cooperation of natural product chemistry, medicinal chemistry and chemical biology has produced a collection of well-studied examples for how electrophilic natural products exert their biological functions that range from antibiotic to antitumor effects. Special emphasis is put on the elucidation of their respective biological targets via activity-based protein profiling, which together with the recent advancements in mass spectrometry has been crucial to the success of the field. The wealth of naturally occurring electrophilic moieties and their chemical complexity enables binding of a large variety of biological targets, such as enzymes of all classes, nonenzymatic proteins, DNA and other cellular compounds. With approximately 30,000 genes in the human genome but only 266 confirmed protein drug targets, the study of biologically active, electrophilic natural products has the potential to provide insights into fundamental biological processes and to greatly aid the discovery of new drug targets.  相似文献   

9.
Chemical genetics and reverse chemical genetics parallel classical genetics but target genes at the protein level and have proven useful in recent years for screening combinatorial libraries for compounds of biological interest. However, the performance of combinatorial chemistry in filling pharmaceutical pipelines has been lower than anticipated and the tide may be turning back to Nature in the search for new drug candidates. Even though diversity oriented synthesis is now producing molecules that are natural product-like in terms of size and complexity, these molecules have not evolved to interact with biomolecules. Natural products, on the other hand, have evolved to interact with biomolecules, which is why so many can be found in pharmacopoeias. However, the cellular targets and modes of action of these fascinating compounds are seldom known, hindering the drug development process. This review focuses on the emergence of chemical proteomics and reverse chemical proteomics as tools for the discovery of cellular receptors for natural products, thereby generating protein/ligand pairs that will prove useful in identifying new drug targets and new biologically active small molecule scaffolds. Such a system-wide approach to identifying new drugable targets and their small molecule ligands will help unblock the pharmaceutical product pipelines by speeding the process of target and lead identification.  相似文献   

10.
Natural products (NPs) have been optimized in a very long natural selection process for optimal interactions with biological macromolecules. NPs are therefore an excellent source of validated substructures for the design of novel bioactive molecules. Various cheminformatics techniques can provide useful help in analyzing NPs, and the results of such studies may be used with advantage in the drug discovery process. In the present study we describe a method to calculate the natural product-likeness score--a Bayesian measure which allows for the determination of how molecules are similar to the structural space covered by natural products. This score is shown to efficiently separate NPs from synthetic molecules in a cross-validation experiment. Possible applications of the NP-likeness score are discussed and illustrated on several examples including virtual screening, prioritization of compound libraries toward NP-likeness, and design of building blocks for the synthesis of NP-like libraries.  相似文献   

11.
Natural products have evolved, at least in part, to bind to biological macromolecules, particularly proteins. As a result, natural products are able to interact with many specific targets within the cell. Indeed for many years this has been central in the drug development process. Today, however, natural products are finding increasing use as probes to interrogate biological systems as part of chemical genomics and related research. In order to demonstrate the utility of natural products in these efforts, the biological activities of many of the major classes of natural products is discussed, according to the cellular organelle and localisation of their specific molecular targets. Emphasis is given to newly discovered compounds and activities that either provide interesting insights into a specific biological function, or that form the basis for potentially new therapeutic approaches.  相似文献   

12.
Due to pressure from combinatorial chemistry and the streamlining of the drug discovery process through automated high-throughput screening technologies, pharmaceutically based natural products programs are under increasing scrutiny. However by taking advantages of technologies originally developed for high-throughput screening and combinatorial chemistry and applying them to processes considered as bottlenecks in classical natural products chemistry (purification, structure elucidation, sample availability) it is our opinion that natural products can still contribute to the effective discovery of novel bioactive and pharmaceutically relevant metabolites. We describe here several such strategies that if universally implemented, will demonstrate i) whether chemical diversity is truly being accessed, ii) that novel metabolites can be formatted in a manner appropriate for modern screening paradigms, and iii) that natural products can be rapidly identified not only for novelty and pharmaceutical relevance but to assess their true biological origin.  相似文献   

13.
Pyrone scaffolds are often present in natural products and many derivatives therefore exhibit favorable biocompatibility and toxicity profiles. Hydroxypyrones are obtained from natural sources or can be synthesized by different well established approaches and may easily be converted into the analogous thiopyrones and hydroxypyridones. These features make them well suited to drug development and other biological applications. Herein, we summarize recent literature on the use of (thio)pyr(id)ones in bioinorganic chemistry with a focus on their metal ion chelating properties. Selected examples and different approaches using (thio)pyr(id)ones are presented and the influence of structural modifications on their chemical, physical and biological properties are discussed.  相似文献   

14.
Natural products represents an important source of new lead compounds in drug discovery research. Several drugs currently used as therapeutic agents have been developed from natural sources; plant sources are specifically important. In the past few decades, pharmaceutical companies demonstrated insignificant attention towards natural product drug discovery, mainly due to its intrinsic complexity. Recently, technological advancements greatly helped to address the challenges and resulted in the revived scientific interest in drug discovery from natural sources. This review provides a comprehensive overview of various approaches used in the selection, authentication, extraction/isolation, biological screening, and analogue development through the application of modern drug-development principles of plant-based natural products. Main focus is given to the bioactivity-guided fractionation approach along with associated challenges and major advancements. A brief outline of historical development in natural product drug discovery and a snapshot of the prominent natural drugs developed in the last few decades are also presented. The researcher’s opinions indicated that an integrated interdisciplinary approach utilizing technological advances is necessary for the successful development of natural products. These involve the application of efficient selection method, well-designed extraction/isolation procedure, advanced structure elucidation techniques, and bioassays with a high-throughput capacity to establish druggability and patentability of phyto-compounds. A number of modern approaches including molecular modeling, virtual screening, natural product library, and database mining are being used for improving natural product drug discovery research. Renewed scientific interest and recent research trends in natural product drug discovery clearly indicated that natural products will play important role in the future development of new therapeutic drugs and it is also anticipated that efficient application of new approaches will further improve the drug discovery campaign.  相似文献   

15.
The structural diversity of natural products and their derivatives have long contributed to the development of new drugs. However, the difficulty in obtaining compounds bearing skeletally novel structures has recently led to a decline of pharmaceutical research into natural products. This paper reports the construction of a meroterpenoid-like library containing 25 compounds with diverse molecular scaffolds obtained from diversity-enhanced extracts. This method constitutes an approach for increasing the chemical diversity of natural-product-like compounds by combining natural product chemistry and diversity-oriented synthesis. Extensive pharmacological screening of the library revealed promising compounds for anti-osteoporotic and anti-lymphoma/leukemia drugs. This result indicates that the use of diversity-enhanced extracts is an effective methodology for producing chemical libraries for the purpose of drug discovery.  相似文献   

16.
天然蛋白质由20种天然氨基酸组成,这些蛋白质的构筑基元包含功能基团:羧基、氨基、巯基、硫醚、羟基、碱性胺、烷基和芳基。然而,这些有限的功能基团却不足以完成生物体内所有的生物学功能。为了更好地让生命的体现者--蛋白质完成更加精确和多样的生物学功能,自然界会对蛋白质进行翻译后的修饰,包括:磷酸化,甲基化,乙酰化或者羟基化,甚至在某些情况下,进化出一种新型的翻译机制以便插入硒代半胱氨酸或者吡咯霉素。受此启发,生物化学家发展出各种生物或化学方法来改变或插入新的蛋白质构筑基元,使天然蛋白质完成其相应的生物学功能或者使其具有某些特殊的性质,甚至是创造一种新酶。该文将简单介绍这些蛋白质修饰策略以及该领域的最新进展。  相似文献   

17.
熊英  琚振华  王晓光  方向  吴范宏 《有机化学》2009,29(11):1728-1743
内酯化合物广泛存在于天然产物和具有生理活性的物质中, 因此, 内酯化合物的合成一直是人们非常关心的一个研究领域, 不仅作为天然产物的重要合成砌块, 也用来合成一些精细化工产品和医药中间体. 将氟原子或含氟基团引入到内酯化合物分子中, 可使其生理活性发生改变. 就含氟内酯化合物合成方法的研究进展进行了综述.  相似文献   

18.
Natural products provide an unparalleled source of chemical scaffolds with diverse biological activities and have profoundly impacted antimicrobial drug discovery. To further explore the full potential of their chemical diversity, we survey natural products for antifungal, target-specific inhibitors by using a chemical-genetic approach adapted to the human fungal pathogen Candida albicans and demonstrate that natural-product fermentation extracts can be mechanistically annotated according to heterozygote strain responses. Applying this approach, we report the discovery and characterization of a natural product, parnafungin, which we demonstrate, by both biochemical and genetic means, to inhibit poly(A) polymerase. Parnafungin displays potent and broad spectrum activity against diverse, clinically relevant fungal pathogens and reduces fungal burden in a murine model of disseminated candidiasis. Thus, mechanism-of-action determination of crude fermentation extracts by chemical-genetic profiling brings a powerful strategy to natural-product-based drug discovery.  相似文献   

19.
The vast majority of scaffolds found in natural products are absent from the currently available compound collections for biological screening. At the same time, scaffolds derived from natural products may have a distinct advantage over non-natural cores in terms of providing compounds endowed with biological activities and should be used extensively in screening library design. We have developed a synthetic approach to merging a naturally occurring 1-azaadamantane core with a vicinal amino alcohol moiety that is also common in natural product chemical space. The synthesis features diastereoselective epoxidation of racemic chiral 2,6-diaryl-4-methylene 1-azaadamantanes with subsequent SN2-type epoxide opening in aqueous isopropanol.  相似文献   

20.
《Tetrahedron》2014,70(52):9759-9767
Lycogarubin C, permethyl storniamide A, and lamellarin G trimethyl ether are pyrrole containing, natural products, which exhibit interesting biological properties. Such properties include anti-tumor activity on a variety of cancer cell lines including those that confer drug resistance, inhibition of HIV integrase, and vascular disrupting activity. We now describe the use of methyl and ethyl 3-bromo-2-formylpyrrole-5-carboxylate as building blocks for the formal synthesis of these three highly functionalized, bioactive pyrroles. These new building blocks will now provide ready access to the natural products and many novel analogs due to the ability to easily modify positions 2,3,4, and 5 of the pyrrole core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号