首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel bisphenol-AP-aniline-based benzoxazine monomer (B-AP-a) was synthesized from the reaction of 4,4′-(1-phenylethylidene) bisphenol (bisphenol-AP) with formaldehyde and aniline. The chemical structures were identified by FT-IR, 1H and 13C NMR analyses. The polymerization behavior of the monomer and the types of hydrogen bonding species were monitored by differential scanning calorimetry (DSC) and FT-IR. The curing kinetics was studied by isothermal DSC and the isothermal kinetic parameters were determined. The thermal properties of cured benzoxazine were measured by DSC and thermogravimetric analysis (TGA). The bisphenol-AP-aniline-based polybenzoxazine (poly(B-AP-a)) exhibited higher glass transition temperature (Tg) and better thermal stability than corresponding bisphenol A-aniline-based polybenzoxazines (poly(BA-a)). The Tg value of poly(B-AP-a) is 171 °C. The temperatures corresponding to 5% and 10% weight loss is 317 and 347 °C, respectively, and the char yield is 42.2% at 800 °C. The isothermal curing behavior of B-AP-a displayed autocatalysis and diffusion control characteristics. The modified autocatalytic model showed good agreement with experimental results.  相似文献   

2.
The use of an epoxidized fatty acid ester (EFAE) as a natural-based plasticizer for plasticized PVC (P-PVC) has been evaluated in this work. The effect of the curing conditions has been studied by following several test techniques such as mechanical properties, thermal behavior, color changes, solvent migration and microstructure. Different curing processes at isothermal conditions (ranging from 160 °C to 220 °C) have been carried at curing times in the 6–16 min range. The optimum mechanical response (tensile strength values in the 9–10 MPa range and elongation at break close to 250%) is obtained for plastisols cured at 200 and 220 °C for 12 and 8 min curing times, respectively. These curing conditions also offer the lowest migration in n-hexane (lower than 11%) which is indicative of plasticizer total absorption. Furthermore, the use of these curing conditions does not lead to thermal degradation as confirmed by color measurements.  相似文献   

3.
The effect of layered silicate nanoclays, nano-silica and double-walled carbon nanotubes (DWNTs) on the thermal stability and fire reaction properties of two aerospace grade epoxy resins (a high temperature curing tetra-functional and a low temperature curing bi-functional resin) has been investigated using thermal analysis, cone calorimetry, LOI and UL-94 techniques. The morphology of the polymer-clay nanocomposites, determined by X-ray diffraction and transmission electron microscopy indicated intercalated structures. The addition of nanoclays (5-wt%) to both resins had a thermal destabilisation effect in the low temperature regime (<400 °C), but led to higher char yield at higher temperatures. The inclusion of nano-silica at 30-wt% significantly improved the thermal stability of the resins while DWNTs had an adverse effect due to their poor dispersion in the matrix. The nanoclays and carbon nanotubes significantly increased the fire resistance of the tetra-functional epoxy resin while a minimal effect was observed for the bi-functional resin.  相似文献   

4.
A new series of high flow PMR-type addition curing polyimides was developed, which employed the substitution of 2,2′-bis(trifluoromethyl)-4,4′-diaminobiphenyl (BTDB) for p-phenylenediamine (p-PDA) in a PMR-II formulation. These thermoset polyimides, designated as 12F resins, were prepared from BTDB and the dimethyl ester of 4,4′-(hexafluoroisopropylidene)-diphthalic acid (HFDE) with either nadic ester (NE) or p-aminostyrene (PAS) as the endcaps for addition curing. The 12F prepolymers displayed lower melting temperatures in DSC analysis, and higher melt flow in rheological studies than the corresponding PMR-II polyimides. Long-term isothermal aging studies showed that BTDB-based 12F resins exhibited comparable thermo-oxidative stability to p-PDA based PMR-II polyimides. The noncoplanar 2- and 2′-disubstituted biphenyldiamine (BTDB) not only lowered the melt viscosities of 12F prepolymers, but also retained reasonable thermal stability of the cured resins. The 12F polyimide resin with p-aminostyrene endcaps showed the best promise for long-term, high-temperature application at 343°C (650°F). © 1994 John Wiley & Sons, Inc.  相似文献   

5.
The objective of this work was to investigate the changes in surface morphology associated with thermal degradation of poly(p-phenylene terephthalamide) (PPTA) into chars. To this end, PPTA samples decomposed at several temperatures up to 800 °C were studied on a local scale using atomic force microscopy (AFM) and scanning tunnelling microscopy (STM). Domains with a diameter of 40-50 nm started appearing among PPTA nanofibrils at about 500 °C. At this temperature and above, a film coating the fibre developed. This layer was much less rigid than PPTA, and remained deposited on the fibres, even at high temperatures. At 800 °C, the STM images showed a surface distribution typical of a carbonaceous material, isotropic although somewhat heterogeneous. When an intermediate isothermal step (500 °C, 200 min) was introduced along with heat treatment of PPTA under a constant rate, the material obtained at the end of this step was conductive enough to be studied by STM. Although the coating over the fibres also remained after the isothermal step, it was less homogeneous than in the absence of isothermal treatment. On further heating, the residue exhibited a surface morphology typical of a carbonaceous material, but much more homogeneous and isotropic than in the absence of the isothermal step.  相似文献   

6.
7.
Twelve structurally different bis- and tetramaleimides were synthesized by Friedel–Crafts reaction between 4-maleimido-benzoylchloride or 3,5-bismaleimido-benzoylchloride and various aromatic reagents. They were characterized by infrared (IR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. Crosslinked resins were obtained by curing the monomers at 250°C/6 h. Thermal characterization of monomers and cured resins was accomplished by differential thermal analysis (DTA), dynamic thermogravimetric analysis (TGA), and isothermal gravimetric analysis (IGA). Tetramaleimides were polymerized at lower temperatures than did the respective bismaleimides. The cured resins were stable up to 317–385°C in N2 atmosphere and formed an anaerobic char yield of 52–66% at 800°C.  相似文献   

8.
Phthalonitrile endcapped oligomers containing aromatic ether and imide linkages have been synthesized and characterized. The phthalonitrile terminated oligomers were prepared in two step (one spot) method by the reaction of an excess amount of pyromellitc dianhydride (PMDA) with aromatic diamines, in a N,N-dimethylacetamide (DMAc)/toluene solvent mixture to form anhydride terminated oligomeric intermediate that was terminated by the reaction with 4-(aminophenoxy) phthaloitrile. The average molecular weights of the prepared oligomers were determined by GPC analysis. The oligomeric phthalonitrile monomers have been converted to network polymers using 4,4'-diaminodiphenyl sulfone (DDS) (5.0 wt %) curing additive at elevated temperatures. Differential scanning calorimetric (DSC) analysis was used to follow the polymerization as the oligomeric phthalonitrile/diamine mixtures and prepolymers. An isothermal rheometric analysis was conducted to determine the complex viscosity of the prepolymers during polymerization reaction. Viscosity increases as a function of time due to crosslinking, which depends upon the concentration and reactivity of the curing agent. The TGA analysis of cured resins showed superior thermal and thermo-oxidative stability. The temperature of 10% weight loss from TGA are in the range of 498-511 °C in N2 and 448–461 °C in air atmosphere. Char yield at 800 °C is 41.7–50.2% in air and 70.6–83.1% in N2.  相似文献   

9.
10.
A series of difunctional fluorene-based benzoxazine monomers were synthesized from the reaction of 9,9-bis-(4-hydroxyphenyl)-fluorene with formaldehyde and primary amines including aniline, o-toluidine, n-butylamine, and n-octylamine. Their chemical structures were confirmed by FT-IR, 1H and 13C NMR analyses. The curing behaviors of the precursors were monitored by differential scanning calorimetry (DSC) and FT-IR. The thermal properties of cured polymers were evaluated with DSC and thermogravimetric analysis (TGA). The fluorene-based polybenzoxazines show the typical curing characteristic of oxazine ring-opening for difunctional benzoxazines centred at 231-250 °C, and remarkably higher glass transition temperature and better thermal stability ascribed to the high rigidity, high aromatic content, and intermolecular and intramolecular hydrogen bonding. The thermal decomposition temperature and char yield of aromatic amine-fluorene-based polybenzoxazines are much higher than those of aliphatic amine-based polybenzoxazines.  相似文献   

11.
The effects exerted by elevated temperatures and thermal oxidative isothermal aging in air at 150, 200, 250, and 300°C on the thermal and physicomechanical properties of glass-reinforced plastics based on copolymers of unsaturated polyester resins with divinyl aromatic compounds and formulations was studied.  相似文献   

12.
In this study, polycardanol, which was synthesized by enzymatic oxidative polymerization of thermally treated cashew nut shell liquid (CNSL) using fungal peroxidase, was partially or fully cured using methyl ethyl ketone peroxide (MEKP) as initiator and cobalt naphthenate (Co-Naph) as accelerator. The curing behavior of polycardanol was extensively investigated in terms of curing temperature, curing time, concentration of initiator and accelerator, and the monomer-to-polymer conversion of polycardanol by means of differential scanning calorimetry (DSC). The curing behavior significantly depends on the thermal condition given and it was monitored with the change of the exotherms as a function of temperature. The optimal conditions for fully curing polycardanol are 1 wt% MEKP, 0.2 wt% Co-Naph, curing time 120 min, and curing temperature 200 °C. This study suggests that a polycardanol with high monomer-to-polymer conversion would be useful for processing a polycardanol matrix composite under the optimal conditions of curing.  相似文献   

13.
The curing reactions of the epoxy resins tetraglycidyl diaminodiphenyl methane (TGDDM) and tetraglycidyl methylenebis (o-toluidine) (TGMBT) using diaminodiphenyl sulfone (DDS), diaminodiphenyl methane (DDM) and diethylenetriamine (DETA) as curing agents were studied kinetically by differential scanning calorimetry. The dynamic scans in the temperature range 20°–300°C were analyzed to estimate the activation energy and the order of reaction for the curing process using some empirical relations. The activation energy for the various epoxy systems is observed in the range 71.9–110.2 kJ·mol–1. The cured epoxy resins were studied for kinetics of thermal degradation by thermogravimetry in a static air atmosphere at a heating rate of 10 deg·min–1. The thermal degradation reactions were found to proceed in a single step having an activation energy in the range 27.6–51.4 kJ·mol–1.
Zusammenfassung Die Vernetzungsreaktionen der Epoxidharze Tetraglycidyl-diamino-diphenyl-methan (TGDDM) und Tetraglycidyl-methylen-bis(o-toluidin) (TGMBT) unter Verwendung von Diaminodiphenylsulfon (DDS), Diaminodiphenylmethan (DDM) und Diethylentriamin (DETA) als Vernetzungsmittel wurden kinetisch mittels DSC untersucht. Die dynamischen Scans im Temperaturbereich 20°–300°C wurden analysiert, um unter Anwendung einiger empirischer Gleichungen die Aktivierungsenergie und die Reaktionsordnung des Vernetzungsprozesses zu ermitteln. Die Aktivierungsenergie der einzelnen Epoxy-Systeme liegt im Bereich 71.9–110.2 kJ·mol–1. An der ausgehärteten Harze wurde mittels TG in einer statischen Luftatmosphäre un deiner Aufheizgeschwindigkeit von 10 Grad/min die Kinetik des termischen Abbaues untersucht. Man fand, daß die thermiscehn Abbaureaktionen in einem Schritt ablaufen und ihre Aktivierungsenergie im Intervall 27.6–51.4 kJ·mol–1 liegt.
  相似文献   

14.
A thermoplastic toughener, polyether sulphone (PES) and a number of different types of flame retardants were blended in different ratios with a commercial epoxy resin triglycidyl-p-aminophenol (TGAP) and 4,4-diamino diphenyl sulphone (DDS) a curing agent. The effect of type and levels of flame retardants (FR) and the toughening agent on the curing, thermal decomposition and char oxidation behaviour of the epoxy resin was studied by the simultaneous differential thermal analysis and thermogravimetric techniques. It was observed that the toughener slightly increases the curing temperature (by up to 20 °C) but had minimal effect on the decomposition temperature of the resin. Flame retardants, however affected all stages depending upon the type of flame retardant used. The curing peak for samples containing tougher and flame retardants although slightly changed depending upon the type of FR, was not more than ± 20 °C compared to that of samples containing toughener only. All flame retardants lowered the decomposition temperature of the epoxy resin. Phosphorus- and nitrogen-containing flame retardants reduced the char oxidation leading to more residual char, whereas halogen- containing flame retardants had less effect on this stage.  相似文献   

15.
A series of meltable oligoimide resins with controlled molecular weights by reactive phenylethynyl endcapping groups have been prepared by the thermal polycondensation of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) with the aromatic diamine mixtures consisting of different mole ratios of 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (1,4,4-6FAPB) and 3,4′-oxydianiline (3,4′-ODA) in the presence of 4-phenylethynylphthalic anhydride (PEPA) as molecular weight-controlling and reactive endcapping reagent. Experimental results indicated that the molecular weight-controlled oligoimide resins were mixtures containing a series of biphenylethynyl-endcapped oligoimides with different chemical structures and different molecular weights. The typical oligoimide resins could be melted at temperatures of 300 °C to yield stable molten fluid with melt viscosity of 13.4 Pa s, which was suitable for melt processing. The molten oligoimide resins could be further polymer chain extended and crosslinked by thermal curing of the reactive phenylethynyl groups to give strong and tough thermosetted polyimides. Thus, the oligoimide resin with calculated molecular weight of 2500 exhibited not only good meltability with low melt viscosity, but also high melt stability and fluidability at temperatures of <300 °C. After thermal curing, the obtained thermosetted polyimide showed high glass transition temperature (>316 °C, DMA), excellent thermal stability with initial thermal decomposition temperature of 588 °C and good mechanical properties with flexural strength of 159.1 MPa, flexural moduli of 3.3 GPa, tensile strength of 94.7 MPa and elongation at breakage of 9.0%.  相似文献   

16.
Heat-resistant polymers were obtained by thermal polymerization of several bismaleimides or their substituted derivatives. The chain of the polymer precursors was extended by incorporation of imidized benzophenone tetracarboxylic dianhydride between the maleimide rings in order to impart a degree of flexibility in the polymers. The bismaleimides and their corresponding tetraamic acids were characterized by infrared (IR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The differential thermal analysis (DTA) thermograms of the monomers showed exotherms at 200–340°C attributed to the thermally induced polymerization reactions. The influence of different substituents in the maleic double bond on the curing temperature was investigated. The thermal stability of the cured resins was evaluated by thermogravimetric analysis (TGA) and isothermal gravimetric analysis (IGA). They were stable up to 367–433°C both in nitrogen and air atmosphere and afforded 57–68% char yield at 800°C under anaerobic conditions. The structure of the aromatic and aliphatic diamines utilized for imidization was correlated with the thermal stability of the cured resins. The bismaleimide derived from p-phenylenediamine gave the most heat-resistant resin because of its higher rigidity.  相似文献   

17.

The preliminary studies on thermal behavior of differently aged natural resins from Russia (Khatanga), Dominican Republic (El Valle), Colombia and Poland (Jantar) were performed. Thermal stability and behavior under elevated temperature were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC), while the differences in the structure and composition by FT-IR spectroscopy. Analyzed resins show different thermal effects during heating suggesting that possible post-reactions and structural changes occurred. TG results indicated that Dominican, Russian and Colombian resins present relatively high thermal stability under air conditions in the range of 228–300 °C, whereas the mass loss of 5mass% at about 217 °C was observed for Baltic amber. During DSC experiments, the analyzed resins expose thermal events which make impossible determination of glass transition temperature in a raw sample. The results indicate that both TG and DSC cannot be considered as methods for age dating of natural resins and more advanced techniques should be applied. Careful analysis of FT-IR data in the carbonyl region may provide additional information about the composition and history of the natural resin.

  相似文献   

18.
The process of thermal imidization reaction is significant for temperature and time control in the polyimide industry. Here, we report the effect of carbon nanotubes and their states of dispersion on the thermal imidization of the precursor films of polyimide (poly(amic acid)) for the first time. The curing process was followed by measuring Fourier transform-infrared (FT-IR) spectra, fluorescence spectra, thermogravimetric-differential scanning calorimeter (TG-DSC) properties and the refractive indices of films. It was found that by evenly dispersing 1 wt% of carbon nanotubes assisted by a dispersant in the poly(amic acid),the full imidization temperature of the polyimide can be reduced from 300 °C to 250 °C. Different states of distribution of CNTs were observed by light microscopy and scanning electron microscopy, and proved that a better dispersion of carbon nanotubes dramatically enhanced the speed of imidization. Moreover, the DSC results showed that lower decomposition temperature of poly(amic acid) could be obtained with more uniform distribution of carbon nanotubes, which means the process of cyclodehydration of the poly(amic acid) was accelerated.  相似文献   

19.
Aminophenoxycyclotriphosphazenes have been used as curing agents for epoxy resins. The thermal curing was performed in stages at 120–125 and 175–180°C followed by postcuring at 225°C to give tough brown polymers. The thermal curing reaction was monitored using FTIR and differential scanning calorimetry. Thermogravimetric analysis of the cured resins has shown thermal stability up to 350–340°C. The char yield obtained in nitrogen at 800°C was about 55–42% and in air at 700°C was about 40–32%. Graphite cloth laminates were prepared. The mechanical properties evaluated were found superior to those of commonly used epoxy resin systems. These resins are useful for making fire- and heat-resistant composites, laminates, molded parts, and adhesives.  相似文献   

20.
New thermosetting resins were prepared from the reaction of 1,4-bis(2,2-dicyanovinyl)benzene with aromatic diamines in varying molar ratios. The thermal stability of these resins was correlated with their composition and the curing conditions. They were stable in N2 up to 370–448°C and afforded anaerobic char yields of 73–84% at 800°C after curing at 300°C for 20–60 h. The temperature dependence of the electrical resistivity of all resins pyrolyzed at 700°C for 15 h was studied in the temperature range from ?173–327°C (100–600 K). The results showed that at room temperature the unpyrolyzed polymers have insulating properties, whereas a dramatic decrease in the electrical resistivity is observed following pyrolysis. The temperature dependence of the electrical resistivity suggests that all of the materials studied have semiconducting properties. The observed electrical conductivity is thermally activated with activation energies ranging from 0.03–0.06 eV. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号