首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(d,l-lactide) (PDLLA) degraded at processing temperature under air and nitrogen. A random chain scission model was established and used to determine the activation energy Ea, and FT-IR, 1H and 13C NMR were used to elucidate the degradation behavior under different atmospheres. Results showed that there were two to three stages. The 1st stage was dominated by the oligomers containing carboxylic acid groups and hydroxyl groups, during which oxygen and nitrogen had little effect on the degradation, thus they share similar Ea. When the oligomers were consumed over or evaporated, the 2nd stage began, and oxygen had a promoting effect on the thermo-oxidation process, resulting in the great decrease in Ea. The third stage of PDLLA was observed when it degraded under nitrogen over 200 °C, which was caused by the appearance of carboxylic acid substance.  相似文献   

2.
The predominant mechanism of the hydrolytic degradation of oligo(d,l-lactide)-grafted dextrans in phosphate buffer was followed by quantifying both released dextran and lactic acid from the copolymers. The studied amphiphilic copolymers, with well-defined structure, exhibited various oligo(d,l-lactide) weight fractions (FOLA) while having a quite high extent of free hydroxyl groups (>90%). Depending on their FOLA, oligo(d,l-lactide)-grafted dextrans were soluble either in water or in organic solvents (THF, toluene, …) and different prevailing mechanisms of hydrolytic degradation were observed. The copolymer soluble in THF, with longer oligo(d,l-lactide) grafts and higher FOLA, was found to degrade via a particular mechanism by which the greatest part of dextran was released into buffer medium during the first two weeks of degradation. During the initial stage of degradation, the hydrophilicity of dextran backbone was considered to be the main driving force for the hydrolytic cleavage of the ester linkage between backbone and grafts. Released oligo(d,l-lactide) grafts were found to be degraded via chain-end degradation or random degradation depending on their solubility in buffer medium. In case of water-soluble copolymers with shorter oligo(d,l-lactide) grafts and lower FOLA, the chain-end degradation was exclusively observed.  相似文献   

3.
Degradable behaviors of polymer for implantation in body should be evaluated before clinical application. The effect of continuous mechanical load on the degradation progress of poly(d,l-lactic acid) (PDLLA) foam gasket was investigated in detail by specially designed load-providing devices. While PDLLA degraded in the PBS solution (pH, 7.4) at 37 °C for 3 months, the changes of surface morphology, molecular weight, elastic modulus, tensile strength and mass loss were recorded. The results revealed that the degradation rates of PDLLA under continuous loads were obviously quicker than those without load. Moreover, the influence of tensile plus compressive load was larger than that of tensile load. It was indicated that in vivo degradation of PDLLA would not only be influenced by the local solution, but also by the surrounding load. When regulating the degradation rate of bioabsorbable polymer, one should consider the indispensable effect of load where implanted.  相似文献   

4.
The use of clay nanofillers offers a potential route to improved barrier properties in polylactide films. Magnesium-aluminium layered double hydroxides (LDHs) are interesting in this respect and we therefore explored synthesis of PLA-LDH nanocomposites by ring-opening polymerization. This method is attractive because it should ensure good dispersion of LDH in the polymer. The effect of adding either LDH carbonate (LDH-CO3) or laurate-modified LDH (LDH-C12) was investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that exfoliated nanocomposites were obtained when using LDH-C12 but that LDH-CO3 gave a partly phase-separated morphology. Thermogravimetric analysis showed that PLA-LDH combinations exhibited higher degradation onset temperatures and differential scanning calorimetry confirmed that LDHs can act as nucleating agents. However, PLA molecular weight was significantly reduced when in-situ polymerization was conducted in the presence of the LDHs and we suggest that chain termination via LDH surface hydroxyl groups and/or metal-catalyzed degradation could be responsible.  相似文献   

5.
In order to investigate the effect of different chain extenders on degradation properties of segmented polyurethanes (SPUs), three types of segmented polyurethanes (SPU-P, SPU-O and SPU-A) based on poly (d, l-lactic acid) diol, hexamethylene diisocyanate (HDI), were synthesized with three chain extenders: peperazine (PP), 1, 4-butanediol (BDO) and 1, 4-butanediamine (BDA), respectively. Thermogravimetric analysis, activation energy and in vitro degradation were used to characterize the obtained polymers, quantitatively. The results revealed that chain extender played an important role in thermal degradation and biodegradation of polyurethanes. Thermogravimetric analysis and activation energy demonstrated that SPU-O, SPU-P and SPU-A presented best, second and weakest thermostability, respectively, and the thermal degradation mechanism of three SPUs was the same and regarded as a two-stage degradation. Data of hydrolytic degradation of the polymers during 12 weeks indicated that the in vitro degradation stability of SPU-A and SPU-P was similar, but both were better than that of SPU-O. The reason for the differences among three types of SPUs was discussed in this paper.  相似文献   

6.
The aim was to investigate the degradation behaviour of poly(ethylene glycol-co-d,l-lactide) (PEG-d,l-PLA) multiblock copolymer, in bulk and as microspheres, in aqueous medium. The degradation behaviour of PLA homopolymers in bulk and microspheres was evaluated as comparison.Microsphere preparation was performed by the double emulsion solvent evaporation method. Physical-chemical characterization of the raw polymers and the microspheres was performed by nuclear magnetic resonance (NMR) and modulated differential scanning calorimetry (MDSC). Polymer molecular weight, before and after incubation in aqueous environment, was evaluated by GPC; water uptake and mass loss were determined gravimetrically.The presence of PEG segments inside PLA chains gave a characteristic spongy structure to the microspheres. A significant increase in polymer Tg values was found for the microsphere formulations compared to polymer in bulk. After 63 days of incubation in the aqueous environment, the PEG-d,l-PLA microspheres achieved an average Mw reduction of 47% compared to 20% for PLA microspheres. The corresponding Mw decrease of the polymers in bulk was significantly higher: 72% and 41% for PEG-d,l-PLA and PLA, respectively.The data show how the degradation behaviour of polymer in bulk in an aqueous environment is significantly different from the behaviour of the corresponding microspheres. These results highlight the importance of performing a thorough physical-chemical characterization on microsphere formulations.  相似文献   

7.
Films of poly(l-lactic acid) (PLLA) with different number-average molecular weights (Mn) and d-lactide unit contents (Xd) were made amorphous and the effects of molecular weight and small amounts of d-lactide units on the hydrolytic degradation behavior in phosphate-buffered solution at 37 °C of PLLA were investigated. The degraded films were investigated using gravimetry, gel permeation chromatography, polarimetry, differential scanning calorimetry, X-ray diffractometry, and tensile testing. To exclude the effects of crystallinity on the hydrolytic degradation, the films were made amorphous by melt-quenching. The incorporation of small amounts of d-lactide units drastically enhanced the hydrolytic degradation of PLLA. In the period of 0-32 weeks, the hydrolytic degradation rate constant (k) of PLLA films increased with increasing Xd, while the k values did not depend on Mn. This means that the effects of Xd on the hydrolytic degradation rate of the films are higher than those of Mn. In contrast, in the period of 32-60 weeks neither Xd nor Mn was a crucial parameter to determine k values, probably because in addition to these parameters the differences in the amount of catalytic oligomers accumulated in films and crystallinity affect the hydrolytic degradation behavior of the films. The initially amorphous PLLA films remained amorphous even after the hydrolytic degradation for 60 weeks.  相似文献   

8.
A poly(l,l-lactide-co-glycolide) (70/30)/(tricalcium phosphate) (PLGA/TCP) composite scaffold was fabricated by low-temperature deposition (LDM) and its degradation performed in vitro for 22 weeks. Various changes during degradation in vitro, which included changes in acidity of the degradation medium, morphology, weight, composition, molecular weight of the PLGA component and mechanical properties of the scaffold, were investigated. It was found that the acidity of degradation medium of the PLGA(70/30)/TCP composite scaffolds reduced and became much lower than that of TCP-free scaffold. With degradation, the volume and porosity of the PLGA(70/30)/TCP composite scaffold reduced at first then increased slowly, while the surface morphology of the scaffold changed from smooth to rough. The weight loss of the scaffold increased by dissolution of the degraded products and TCP component, but mainly by dissolution of the glycyl-rich degraded products of the PLGA component. The molecular weight of the PLGA component reduced with time, but the molecular weight distribution increased at first and then reduced. The compressive strength and modulus of the scaffold increased at first and then reduced with further degradation. The effect of degradation on modulus was much bigger than that on compressive strength. Based on excellent cell affinity of the PLGA(70/30)/TCP composite scaffold, a potentially useful bone tissue engineering scaffold is proposed.  相似文献   

9.
This paper reports the preparation of bionanocomposites based on poly(d,l-lactide) and cellulose nanowhiskers (PDLLA/CNWs) and studies the influence of the CNWs on the hydrolytic degradation behavior of the polylactide. The hydrolytic degradation process was studied in a phosphate buffer medium through the sample weight loss and also by FTIR, DSC and TGA measurements. The presence of CNWs induced a strong delay in the hydrolytic degradation of the PDLLA, even when the concentration of the nanofillers was only 1%. This effect was related to the physical barrier created by the highly crystalline CNWs that inhibited water absorption and hence retarded the hydrolytic degradation of the bionanocomposites. In addition, the incorporation of cellulose nanocrystals in the PDLLA also made the biopolymer more thermally stable, increasing the initial temperature of mass loss even after the degradation in phosphate medium. The results presented here show the possibility of controlling the biodegradability and prolonging the service life of a polylactide through the incorporation of a small quantity of nanofillers obtained from renewable materials.  相似文献   

10.
This study describes the miscibility phase behavior in two series of biodegradable triblock copolymers, poly(l-lactide)-block-poly(ethylene glycol)-block-poly(l-lactide) (PLLA-PEG-PLLA), prepared from two di-hydroxy-terminated PEG prepolymers (Mn = 4000 or 600 g mol−1) with different lengths of poly(l-lactide) segments (polymerization degree, DP = 1.2-145.6). The prepared block copolymers presented wide range of molecular weights (800-25,000 g mol−1) and compositions (16-80 wt.% of PEG). The copolymer multiphases coexistance and interaction were evaluated by DSC and TGA. The copolymers presented a dual stage thermal degradation and decreased thermal stability compared to PEG homopolymers. In addition, DSC analyses allowed the observation of multiphase separation; the melting temperature, Tm, of PLLA and PEG phases depended on the relative segment lengths and the only observed glass transition temperature (Tg) in copolymers indicated miscibility in the amorphous phase.  相似文献   

11.
To control the depolymerization process of poly(l-lactic acid) into l,l-lactide for feedstock recycling, the racemization of l,l-lactide as a post-depolymerization reaction was investigated. In the absence of a catalyst, the conversion to meso-lactide increased with increase in the heating temperature and time at a higher rate than the conversion into oligomers. The resulting high composition of meso-lactide suggests that the direct racemization of l,l-lactide had occurred in addition to the known racemization mechanism that occurs on the oligomer chains. In the presence of MgO, the oligomerization rapidly proceeded to reach an equilibrium state between monomers and oligomers. The equilibrium among l,l-, meso-, and d,d-lactides was found to be a convergent composition ratio l,l-:meso-:d,d-lactides = 1:1.22:0.99 (wt/wt/wt) after 120 min at 300 °C. This composition ratio also indicates that in addition to the known racemization reaction on the oligomer chains, direct racemization among the lactides is also a frequent occurrence.  相似文献   

12.
Composite fibers composed of poly(l-lactide)-grafted hydroxyapatite (PLA-g-HAP) nanoparticles and polylactide (PLA) matrix were prepared by electro-spinning. Environmental scanning electron microscope (ESEM) and transmission electron microscopy (TEM) were employed to investigate the morphology of the composite fibers and the distribution of PLA-g-HAP nanoparticles in the fibers, respectively. At a low content (∼4 wt%) of PLA-g-HAP, the nanoparticles dispersed uniformly in the fibers and the composite fibrous mats exhibited higher strength properties, compared with the pristine PLA fiber mats and the simple hydroxyapatite/PLA blend fiber mats. But when the content of PLA-g-HAP further increased, the nanoparticles began to aggregate, which resulted in the deterioration of the mechanical properties of the composite fiber mats. The degradation behaviors of the composite fiber mats were closely related to the content of PLA-g-HAP. At a low PLA-g-HAP content, degradation may be delayed due to the reduction of autocatalytic degradation of PLA. When PLA-g-HAP content was high, degradation rate increased because of the enhanced wettability of the composite fibers and the escape of the nanoparticles from fiber surfaces during incubation.  相似文献   

13.
Surface properties and enzymatic degradation of poly(l-lactide) (PLLA) end-capped with hydrophobic dodecyl and dodecanoyl groups were investigated by means of advancing contact angle (θa) measurement, quartz crystal microbalance (QCM) and atomic force microscopy (AFM). The θa values of end-capped PLLA films were larger than those of non-end-capped PLLA films, suggesting that the hydrophobic dodecyl and dodecanoyl groups were segregated on the film surface. The weight changes of end-capped PLLA thin films during enzymatic degradation in the presence of proteinase K were monitored by using a QCM technique. The relatively fast weight loss of PLLA film occurred during first few hours of degradation, followed by a decrease in the erosion rate. The erosion rate of PLLA films at the initial stage of degradation was dependent on the chain-end structure of PLLA molecules, and the value decreased with an increase in the amount of hydrophobic functional groups. The surface morphologies of PLLA thin films before and after degradation were characterized by AFM. After the enzymatic degradation, the surface of non-end-capped PLLA films was blemished homogeneously. In contrast, the end-capped PLLA thin films were degraded heterogeneously by the enzyme, and many hollows were formed on the film surface. From these results, it has been concluded that the introduction of hydrophobic functional groups at the chain-ends of PLLA molecules depressed the erosion rate at the initial stage of enzymatic degradation.  相似文献   

14.
The hydrolytic degradation of a series of aregic carbohydrate-based polyamides derived from l-arabinose and d-xylose is described. These polyamides are those that are fully sugar-based (PA-SuSu), those derived from aldaric acids and polyalkylene diamines (PA-mSu), and those derived from diamine sugars and polyalkylene dicarboxylic acids (PA-Sun). Their physical properties and crystal structures depend on their constitution and the configuration of the carbohydrate-based moiety. The feasibility of the hydrolysis of these polyamides was, in general, related with such structural properties. Thus, the fully sugar-based PA-SuSu were amorphous, water-soluble materials, and were hydrolysed in water at 70 °C. PA-mSu were crystalline and more resistant to hydrolysis — they were degraded at pH 2 and 70 °C [Tg(s) 60-90 °C]. PA-Sun were amorphous and highly hygroscopic materials — they were hydrolysed in water at 37 °C [Tg(s) 25-40 °C].  相似文献   

15.
This study explores in vitro aging effects on the surface properties of resorbable PLA95 (poly-5d/95l-lactide) bone plates. The in vitro degradation of injection molded PLA95 bone plates was undertaken by soaking them in a PBS solution. Specimens were harvested at 0, 4, 6, 8, 12, 20, and 26 weeks. After each in vitro aging period, the surface morphology, viscosity, chemical structure, wettability, and thermal properties of the PLA95 bone plates were examined by scanning electron microscopy (SEM), capillary viscometers, attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR), contact angle, and modulated differential scanning calorimetry (MDSC), respectively. The surface morphology of aged PLA95 bone plates exhibited bulk erosion. As hydrolysis progressed, the inherent viscosity (I.V.) of the PLA95 plates gradually decreased from 0.83 ± 0.01 dL/g at week 0-0.46 ± 0.03 dL/g at week 26. However, the absorbance peak intensity ratio between δas CH3 (A1452 cm−1) and νCO (A1750 cm−1) and the contact angle reveal different tendencies than that of molecular weight, which decreases. The contact angle of the PLA95 plates decreased until week 4, increased until week 8, and subsequently decreased again. Peak separation analysis reveals that the equilibrium part of the modulated DSC overlapped curves exhibit triple endothermic peaks. Over time, in vitro degradation changes the position and area of the individual peaks. After different time periods of degradation, the variation of wettability shows a tendency similar to the change of PLA95 plates crystallinity; the intensity ratio of A1452 cm−1 and A1750 cm−1as CH3CO) absorbance peaks varied like the ratio of β/α-crystal heat of fusion. Results also show a similarity in the degradation time dependence in MDSC, contact angle, and ATR-FTIR measurements. During the in vitro aging process, the breakdown and subsequent recrystallization of PLA95 molecular chains might be attributed to a progressive change in wettability and the molecular conformation between δas CH3 and νCO.  相似文献   

16.
The multi-arm star polymer (ESOPLA) was obtained by ring-opening polymerization of dl-lactide using multifunctional epoxidized soybean oil (ESO) as an initiator in the presence of a stannous actuate (SnOct2) catalyst. Gel permeation chromatography with multi-angle laser light scattering (GPC-MALLS), FTIR, 1H NMR, thermal analysis and in vitro degradation were used to qualitatively characterize the synthesized polymers. The results revealed that ESO plays an important role in increasing the molecular weight, polymerization rate and monomer conversion rate. Degradation analysis demonstrated that the decrease in molecular weight and the weight loss ratio of the star-shaped ESOPLA were lower than that of linear poly(dl-lactide) (PDLLA). The surface topography of pre- and post-degradation materials was characterized by scanning electron microscopy (SEM). These SEM images showed that the linear PDLLA films underwent water erosion more readily than the star-shaped polymer films.  相似文献   

17.
A series of homo- and copolymers were synthesized by ring-opening polymerization of 1,3-trimethylene carbonate and d,l-lactide, using low toxic Zn(Lac)2 as catalyst. The hydrolytic and enzymatic degradation of PTMC homopolymer and PTDLA copolymers was performed at 37 °C in pH 7.4 phosphate buffered saline or in pH 8.5 Tris buffer using proteinase K. Degradation was followed by using various analytical techniques such as NMR, GPC, DSC and ESEM. PTMC degrades extremely slowly by pure hydrolysis or in the presence of proteinase K. In contrast, PTDLA copolymers with different compositions degrade at various rates both in PBS and in enzyme solutions. The higher the LA content, the faster the degradation. LA units are preferentially degraded during hydrolytic degradation, indicating that ester bonds are more susceptible to hydrolytic cleavage than carbonate ones. Changes in surface morphology are observed during enzymatic degradation, in agreement with surface erosion process. The PTDLA11 copolymer with equivalent TMC/LA contents is highly elastic. Its residual strain is approximately 4% after the first cycle at a strain of 50%. The shape recovery ratio is up to 83%. Therefore, it is concluded that high molecular weight PTDLA copolymers are promising candidates for clinical applications in minimally invasive surgery.  相似文献   

18.
Novel butanediamine-grafted poly(dl-lactic acid) polymers (BDPLAs) were synthesized via a series of chemical bulk modifications in this study. Briefly, maleic anhydride (MAH) was first grafted onto the side chain of poly(dl-lactic acid) (PDLLA) molecules via melt free radical copolymerization using benzoyl peroxide (BPO) as initiator to get maleic anhydride-grafted PDLLA polymers (MPLAs); thereafter butanediamine (BDA) was immobilized onto grafted anhydride groups in MPLAs via N-acylation reaction to obtain the desired BDPLAs. Gel permeation chromatography with multi-angle laser light scattering (GPC-MALLS), FT-IR, 13C NMR and XPS were employed to qualitatively characterize these synthesized polymers. Rhodamine-carboxyl interaction method and ninhydrin reaction were further used to quantitatively determine the graft ratio of MAH (MAH%) in MPLAs and the graft ratio of BDA (BDA%) in BDPLAs, respectively. The degradations of BDPLAs, PDLLA and MPLAs were investigated by observation of the changes of the pH value of incubation medium, molecular weight and weight loss ratio for a time interval of 12 weeks in vitro, respectively. The results revealed that grafting butanediamine onto PDLLA has weakened or neutralized the acidity of PDLLA degradation products. A uniform degradation of BDPLAs was observed in comparison with an acidity-induced auto-accelerating degradation featured by PDLLA and MPLAs. The biodegradation behaviors of BDPLAs are tunable by controlling the content of BDA. BDPLAs might be a new derivative of PDLLA-based biodegradable materials for medical applications without acidity-caused irritations and acidity-induced auto-accelerating degradation behavior as that of PDLLA.  相似文献   

19.
The soluble products of the hydrolytic degradation of photochemically cross-linked poly-(d,l-lactide-co-glycolide 50/50)-di-acrylate film were analysed at different stages to obtain insight into the complex (bio)degradation processes. Liquid chromatography-mass spectrometry analyses have been used to identify and quantify the various oligomeric and polymeric degradation products from the soluble fraction. The products were analysed directly after release and also after complete hydrolysis of the soluble fraction. The study shows a rapid release of residual photo-initiator followed by a gradual release of lactide/di-ethyleneglycol/glycolide oligomers with varying composition and chain length. The final stage of the sigmoidal weight loss profile reflects the release of polyacrylate chains with lactide/glycolide side chains. The molecular weights of the polyacrylate chains released increase with degradation time, which indicates that the release of these polyacrylate chains is determined by the number and type of ester-groups that must be degraded hydrolytically to dissolve these chains. The analysis of the soluble degradation products provides detailed insights in the chemical changes at the different stages of degradation; extraction, network attack, network penetration, bulk degradation, and finally release of persistent network fragments. Chromatographic and mass spectrometric techniques prove to be powerful tools to enhance the understanding of the hydrolytic degradation of chemically cross-linked acrylates.  相似文献   

20.
A-B-A type tri-block copolymer consisting of N-hydroxypropyl-l-glutamine as the A component and l-alanine as the B component as well as the corresponding random copolymers and homopolymers were prepared by carrying out an aminoalcoholysis reaction with 3-amino-1-propanol, together with a crosslinking reaction with 1,8-octamethylenediamine on membranes of the starting polymer membranes including γ-methyl-l-glutamate residue. It was shown that the effective crosslink density was proportional to the percent crosslinker in the reaction mixture. The relation between their bulk structure and membrane properties were investigated, such as the swelling ratio in water (q), tensile properties, and enzymatic degradation behavior of the membranes in a pseudo-extracellular fluid (PECF). The tensile properties of the hydrophilic membranes were highly dependent on q in PECF, and on the hydrophobic portions in molecular chains, whose behavior was typical of an elastomer. Biodegradation of the membranes in vitro by bromelain indicated that the degradation took place in bulk rather than on the surface, and that the rate of degradation was also highly dependent on q in the samples as well as on the hydrophobic portion of the membranes in PECF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号