首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
In the present decade, the demands for recyclable, environmentally friendly and low-cost with good strength composites materials have been significantly increased. In this context, the particulate wood polymer composites have attracted the researchers owing to their eco-friendliness, low-cost as they are prepared using waste wood particles, and good mechanical and physical properties. These composites were prepared by filling the waste wood particles into the polymers using different fabrication methods such as extrusion, hand layup, compression moulding, injection moulding and additive manufacturing (3D printing). A good number of research works have been reported on the testing and characterization of wood composites for the various applications so far. This fact motivated to prepare a state-of-the-art review on the recent developments in processing, characterization, and applications of wood composites. This paper presents a discussion on the chemical structure and properties of different types of wood species. The mechanical, thermal and water absorption behaviour of thermosets, thermoplastics and biopolymers based wood composites have also been discussed. Further, characterization of the nano biocomposites prepared using nanocellulose/nanoparticles of wood are also presented. The outcomes of the present review provide a good understanding of wood composites that will encourage the researchers for further research works & developments of novel wood composites for the advanced applications.  相似文献   

2.
朱德钦  生瑜  童庆松  王真 《应用化学》2014,31(8):885-891
在转矩流变仪中用熔融接枝法制备马来酸酐(MAH)和苯乙烯(St)接枝聚丙烯(PP)-PP-g-(MAH/St)和PP-g-MAH,将其作为聚丙烯/木粉复合材料的相容剂。 FTIR证实MAH和St单体与PP发生接枝反应。 用SEM和DSC等手段考察两种相容剂对PP/木粉复合材料微观形貌和结晶性能的影响,探索了各种PP/木粉复合材料加工和力学性能不同的内在原因。 SEM显示,PP-g-(MAH/St)改性木粉比PP-g-MAH改性木粉在PP基体中分散性更佳,木粉与PP的界面更加模糊,相容性进一步改善。 DSC结果表明,PP-g-(MAH/St)改性体系可增强木粉对PP的异相成核作用,提高结晶温度和结晶度。 复合材料的加工和力学性能测试结果表明,PP-g-(MAH/St)改性效果明显优于PP-g-MAH。 复合材料的熔体质量流动速率随相容剂用量的增加而逐步下降,PP-g-(MAH/St)改性体系拉伸强度和弯曲强度却逐步上升,并在相容剂用量为4.8 g/100 g PP时达到极值。 此时其拉伸强度达40.62 MPa,分别是未改性体系和PP-g-MAH改性体系的1.29和1.17倍;其弯曲强度达45.72 MPa,分别是未改性体系和PP-g-MAH改性体系的1.23和1.59倍;而无缺口冲击强度却在相容剂用量为3.6 g/100 g PP时达到极值13.35 kJ/m2,分别是未改性体系和PP-g-MAH改性体系的1.62倍和1.42倍。  相似文献   

3.
Accelerated weathering of polypropylene/wood flour composites   总被引:3,自引:0,他引:3  
Wood-plastic composites (WPCs) have received increasing attention during the last decades, because of many advantages related to their use. Some of their main applications are represented by outdoor furnishing and decking; therefore, it is important to assess their behaviour under UV exposure. In this work, polypropylene/wood flour composites were prepared and their resistance to photooxidation investigated. The composites were prepared by extrusion and compression moulding, and were subjected to mechanical tests, FTIR analysis and molecular weight measurements. The results showed that the composites retained a higher fraction of the original mechanical properties after accelerated weathering; the wood flour did not significantly degrade throughout the irradiation time slot of the investigation and the composites kept a higher percentage of the original molecular weight.  相似文献   

4.
A polyphenol-containing extract from winery bio-waste (EP) has been used as an additive for a starch-based polymer (Mater-Bi). EP was used to tailor Mater-Bi properties, thus avoiding the use of synthetic polymer additives. It was found that EP was able to efficiently modulate the processing, mechanical, thermal and biodegradation properties. The observed decrease in melt viscosity showed that EP could improve productivity in polymer processing. Owing to the plasticizing activity of the additive, larger values of elongation at break were found. Moreover, the Mater-Bi crosslinking, which occurs upon thermal aging, was delayed in the presence of EP. Finally, the bio-disintegration rate of doped Mater-Bi decreased, thus suggesting that EP acted as an antimicrobial agent by interfering with the bio-digestion of the polymer films.  相似文献   

5.
朱德钦  生瑜  苏晓芬  邹寅将 《应用化学》2013,30(10):1107-1113
用甲苯-2,4-二异氰酸酯(TDI)和硬脂酸(SA)复合改性木粉,在双螺杆挤出机中制备了聚丙烯(PP)基的木塑复合材料(WPC),研究了SA/TDI摩尔比对木粉表面性能、复合材料力学性能和加工性能的影响。 结果表明,随着SA/TDI摩尔比的增大,改性木粉的表面张力逐渐减小,与PP的界面张力先减小后增大;与未改性的WPC相比,SA/TDI复合改性剂对WPC的拉伸强度、弯曲强度、缺口冲击强度影响不明显,但对无缺口冲击强度提升较大;当SA/TDI摩尔比为1.07时,复合材料的无缺口冲击强度和熔体质量流动速率分别达到9.74 kJ/m2和13.12 g/10 min,分别比未改性WPC提高了77%和22%。  相似文献   

6.
Natural rubber based composites were prepared by incorporating Wood flour of two different particle size ranges (250–300 µm) and (300–425 µm) and concentrations (15 and 30 phr) into the matrix, using a Banbury® internal mixer according to a base formulation. Curing characteristics of the samples were studied. Influence of particle size and loading of filler on the properties of the composites was analyzed. Results obtained show that the addition of wood flour to natural rubber increased scorch time and curing time and caused improvement in modulus at 300% strain and in tear properties. However, it decreased tensile strength and elongation at break. The particle size range of 300–425 µm was found to offer the best overall balance of mechanical and dynamic properties (tan δ and viscous torque). Swelling behavior of the composites in toluene was also analyzed in order to determine the rubber volume fraction and crosslinking density. Composites with the bigger particle size wood flour were found to have greater crosslinking density than the ones with smaller particle size, fact that could possibly indicate a better rubber-filler interaction in the former. Major percentage of filler increased slightly this interaction. Water absorption behavior of the composites with wood flour reached a maximum of 12% w/w when 30 phr of filler were incorporated; nonetheless, particle size did not affect this property. The ageing study in presence of air at 70 °C revealed that natural rubber composites with wood flour maintained the same classification cell with temperature as the pure rubber. A compound with 30 phr of carbon black was prepared for comparative purposes. Results obtained were as expected. Scorch time decreased and higher values of modulus at 300% strain and tensile strength were achieved, due to strongest interaction between filler and elastomer.  相似文献   

7.
Plasticised corn flour/poly(butylene succinate-co-butylene adipate) (PBSA) materials were prepared by extrusion and injection in order to study the impact of PBSA ratio on their physicochemical properties and biodegradability. Scanning electron microscopy observations showed that corn flour and PBSA are incompatible. Three types of morphology have been observed: (i) starch dispersed in a PBSA matrix, (ii) a “co-continuous-like” morphology of starch and PBSA, and (iii) PBSA dispersed in a starch matrix. As expected, the extent of plasticised corn flour starch hydrolysis by amylolytic enzymes decreased when the amount of PBSA increased. Addition of a lipase to hydrolyse PBSA ester bonds enhanced enzymatic hydrolysis of starch by amylolytic enzymes in materials where PBSA formed a continuous phase. This suggests that PBSA formed a barrier restricting the access of amylolytic enzymes to starch. This was consistent with aerobic and anaerobic biodegradation assays, which also showed lower biodegradability of materials containing a majority of PBSA.  相似文献   

8.
Organomodified montmorillonite (OMMT) was prepared using cetylalkyl trimethyl amine bromide. OMMT and wood flour (WF) were surface-modified by silane coupling agent. They were melt-blended with polyvinyl chloride (PVC) and extruded into wood-plastic composite samples using one conical twin screw extruder. The effects of their contents on the composite mechanical properties were investigated. X-ray diffraction, transmission electron microscopy and scanning electron microscopy observed intercalation and dispersion of the OMMT. FTIR and X-ray photoelectron spectroscopy were used to analyze the silane-modification effects. The possible reaction mechanisms were proposed. After wood flour was modified by 1.5 phr silane, the impact strength and the tensile strength of wood flour-PVC composite were increased by 14.8% and 18.5%, respectively. Mechanical tests showed that the addition of OMMT did not enhance the untreated wood flour-PVC composites. However, adding 0.5% OMMT did improve the mechanical properties of the treated ones. The grafting improved the interfacial compatibility between components producing higher properties of the composites. Further addition of OMMT reinforced the composites. Too higher contents of silane and OMMT impaired some properties because of weak interfacial layer and higher concentrated stress. Cone calorimetry showed that the fire flame retardancy and smoke suppression of composites were strongly improved with the addition of OMMT.  相似文献   

9.
Blends and composites based on environmentally degradable-ecocompatible synthetic and natural polymeric materials and fillers of natural origin have been prepared and processed under different conditions. Poly(vinyl alcohol) (PVA) was used as the synthetic polymer of choice by virtue of its capability to be processed from water solution or suspension as well as from the melt by blow extrusion and injection molding. Starch and gelatin were taken as the polymeric materials from renewable resources. The fillers were all of natural origin, as waste from food and agro-industry consisted of sugar cane bagasse (SCB), wheat flour (WF), orange peels (OR), apple peels (AP), corn fibres (CF), saw dust (SD) and wheat straw (WS). All the natural or hybrid formulations were intended to be utilized for the production of: a) Environmentally degradable mulching films (hydro-biomulching) displaying, in some cases, self-fertilizing characteristics by in situ spraying of water solutions or suspensions; b) Laminates and containers to be used in agriculture and food packaging by compression and injection molding followed by baking. Some typical prototype items have been prepared and characterized in relation to their morphological and mechanical properties and tested with different methodology for their propensity to environmental degradation and biodegradation as ultimate stage of their service life. A relationship between chemical composition and mechanical properties and propensity to biodegradation has been discussed in a few representative cases.  相似文献   

10.
The comparative studies on the thermal, mechanical and morphological behavior of compression molded poly(propylene) (PP)/wood flour (WF) composites were performed using wood flours (WFs) of different origins. The comparison has been made on the basis of results obtained from thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and tensile testing. It has been demonstrated that an addition of 5 wt.-% of maleic anhydride grafted polypropylene (PP-g-MA) has a significant effect on the morphological and thermomechanical behavior of the composites. Although, microscopic examinations revealed no significant differences in the morphology of the compatibilized composites, a remarkable improvement of thermal degradation behavior was observed. From the view point of mechanical properties, the composites with high amount of filler (60 wt.-%) showed similar behavior irrespective of the origin of wood flour.  相似文献   

11.
The objective of this work was to investigate the influence of clay nanoparticles on the biodegradability of wheat gluten-based materials through a better understanding of multi-scale relationships between biodegradability, water transfer properties and structure of wheat gluten/clay materials. Wheat gluten/clay (nano)composites materials were prepared via bi-vis extrusion by using an unmodified sodium montmorillonite (MMT) and an organically modified MMT. Respirometric experiments showed that the rate of biodegradation of wheat gluten-based materials could be slowed down by adding unmodified MMT (HPS) without affecting the final biodegradation level whereas the presence of an organically modified MMT (C30B) did not significantly influence the biodegradation pattern. Based on the evaluation of the water sensitivity and a multi-scale characterization of material structure, three hypotheses have been proposed to account for the underlying mechanisms. The molecular/macromolecular affinity between the clay layers and the wheat gluten matrix, i.e. the ability of both components to establish interactions appeared as the key parameter governing the nanostructure, the water sensitivity and, as a result, the overall biodegradation process.  相似文献   

12.
Lactose (L) filled (0-40 wt.%) composites of metallocene linear low-density polyethylene (mLLDPE) were prepared to get a new, environmentally friendly polymeric material. The effect of L on the material was characterized through its mechanical, physico-chemical and rheological properties, and biodegradability in the composting environment (up to 4 months). The microorganisms present in the compost bed have shown great influence on the properties of the new material, as proved by the weight loss data, changes in FTIR-ATR spectra, tensile and rheological properties.The presence of L in the system does not influence tensile properties significantly up to the content of 40 wt.%. The biodegradation of the highest-filled composite has been found substantially higher than that of the others. This is in agreement with the results obtained through surface morphology study by SEM and assessing the presence of microbes in the compost bed where the composites were placed for biodegradation.  相似文献   

13.
Different contents of bonded cellulose were dispersed in a matrix of castor-oil-based polyurethane to produce composites with high susceptibility to fungal attack. We chose to bond the cellulose filler with free diisocyanate, to increase the crosslinking density. Measurements indicated physical and chemical interactions between the polyurethane matrix and cellulose filler. The cellulose network significantly enhanced the interfacial adhesion and thus improved the thermal stability and Young’s modulus of the composites. The influences of the amount of cellulose on the surface chemical structure, surface morphology, and mechanical properties after fungal attack were also investigated. The tensile strength and elongation at break of these composites substantially decreased after exposure to fungus. These composites with high content of renewable raw materials present an optimal balance of physical properties and biodegradability, with potential applications as ecofriendly biomaterials.  相似文献   

14.
Mechanical properties of low density polyethylene filled with various organic fillers were investigated. Different effect of different fillers on the properties was observed and the effect of crosslinking of these materials is also different. Fine anisotropic fillers behave similarly as inorganic fillers. The effect of crosslinking is the highest for composites containing large particulate fillers like beech wood flour. The effects are discussed in terms of mechanical behaviour and crosslinking degree determined from extraction or equilibrium swelling data. A formation of covalent bonds between the filler surface and polymeric matrix is proposed as a result of crosslinking.  相似文献   

15.
聚丙撑碳酸酯(PPC)是一种新型热塑性生物降解材料,但其热性能及力学性能较差,应用受到限制。以秸秆粉这种农作物副产品作为增强体改性PPC,既可以提高PPC的力学性能同时又可开发利用秸秆资源。氯化聚丙撑碳酸酯(CPPC)是聚丙撑碳酸酯(PPC)经过氯化得到的,对天然纤维表面具有良好的浸润性和粘结性。本文以CPPC为增容剂,通过熔融共混法制备了PPC/秸秆粉复合材料。采用扫描电子显微镜(SEM)、拉伸实验、动态力学性能测试(DMA)及转矩流变仪对复合材料的结构及性能进行了表征,重点考察了CPPC的添加量对复合材料力学和流变性能的影响。结果表明,当CPPC质量分数为1.8%时,可使添加质量分数为30%秸秆粉的PPC复合材料拉伸强度提高38%,模量提高30%。同时,CPPC的引入使复合材料的粘度下降,改善了PPC/秸秆粉复合材料的加工性能。因此,作为增容剂的CPPC为制备高性能PPC/天然纤维复合材料提供了新的解决办法。  相似文献   

16.
Most physical properties of a wood plastic composite (WPC) with poly(vinyl chloride) (PVC) matrix are lower than those of corresponding neat PVC because of poor interfacial adhesion between hydrophobic PVC and hydrophilic wood. In this study, to improve the interfacial adhesion, wood flour was pre‐treated with N‐2(aminoethyl)‐3‐aminopropyltrimethoxysilane, and the surface modification was characterized and confirmed by X‐ray photoelectron spectroscopy (XPS). Furthermore, to improve the performance of PVC/wood composites, a type of organoclay was added as nanofiller. PVC/wood/clay composites were prepared by melt blending a heavy metal‐free PVC compound, the aminosilane‐treated wood flour, and the organoclay, and their physical properties were tested by universal testing machine and thermal gravimetric analyzer. X‐ray diffractometer (XRD) analyses of the WPCs showed an intercalated structure of the organoclay. The scanning electron microscope images for the fracture surfaces of the WPCs confirmed the positive effect of the aminosilane pre‐treatment by showing reduced debonding of wood flour from the PVC matrix. The performance of the WPCs was improved by the aminosilane pre‐treatment of the wood flour and the organoclay. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Composites of wood waste and high-density polyethylene (HDPE) resins and different melt flow index (MFIs) was development in this work. Therefore, it was possible to assess their effect on the mechanical, thermal, and morphologic properties of these composites. The formulations were prepared using a twin-screw extruder, and the MFI, tensile strength, flexural strength, and impact strength of the composites were analyzed. Additionally, the thermal properties were evaluated by differential scanning calorimetry (DSC). Finally, structural analyses using optical microscopy (OM) and scanning electron microscopy (SEM) were performed to assess the particles’ dispersion, distribution, and adhesion to the polymer matrix. The results indicated that composites from HDPE resins with a lower MFI yielded a better dispersion of the wood waste. During processing was observed, reduce the MFI and better dispersion of the polymer matrix, which positively influenced some of the mechanical properties analyzed in the study.  相似文献   

18.
The mechanical behaviour of various types of biodegradable materials depends on their chemical composition and additives, the processing characteristics and the application conditions. The environmental conditions during storage and usage of these materials strongly influence their mechanical properties and behaviour. Ageing and degradation during the useful lifetime of biodegradable agricultural films causes losses in the mechanical performance of the material, as measured by monitoring the evolution of some of the critical mechanical properties. Such losses may be comparable to the corresponding losses of the conventional polyethylene agricultural films due to ageing, or they may be more drastic. In the present paper, the overall mechanical and ageing/degradation behaviour of experimental specially designed and manufactured low-tunnel and mulching biodegradable films, exposed to full-scale field conditions is analysed. Selected critical mechanical properties of these films manufactured with different grades of Mater-Bi material and additives, different thickness and processing schemes and exposed to real cultivation conditions in four different locations in Europe are investigated in the laboratory and compared against the corresponding behaviour of conventional agricultural films at various stages of their exposure time.  相似文献   

19.
The aims of this study were to develop composite films based on potato starch and cellulose modified with toluenediisocyanate, to investigate their morphology and structure, and to evaluate their behavior to enzymatic hydrolysis and their potential use to manufacture of biodegradable seedling pots. The effects of modified cellulosic fibers upon mechanical properties and biodegradability of composite materials based on starch matrix were investigated by tensile strength tests, Fourier infrared spectroscopy, X‐ray diffraction, and dynamic vapor sorption. The behavior of the films to enzymatic hydrolysis with amylase and cellulase was studied; the kinetic of enzymatic hydrolysis and characterization of materials are reported. Chemical modification of cellulose improves tensile strength with about 47%, and decreases the biodegradability of composites making them more resistant to microbial attack, thus prolonging their shelf life. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Mechanical composites were prepared by mechanical chemical processing of a mixture of biologically active preparations of arabinogalactan (AG) and dihydroquercetin (DQ) isolated from larch wood. Their properties were studied using HPLC, 13C NMR, and IR spectroscopy. It was found that AG and DQ did not react chemically under the studied conditions. According to x-ray phase and thermal analyses, mechanical processing destroyed the DQ crystalline structure and dispersed it into the AG matrix. The resulting mechanical composites had significantly higher (up to 38 times) solubility in water compared with starting DQ and an unprocessed AG/DQ mixture. It was shown that DQ reduces the extent of destruction of polysaccharide macromolecules during mechanical processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号