首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infrared spectrometric measurements have been used to measure the amount of carbon dioxide generated by UVA irradiation of polypropylene film stabilized with 0.5% of three different hindered amine light stabilizers (HALS). The measurements were made in situ, using a specially constructed glass cell fitted with CaF2 windows. In each case the amount of photogenerated carbon dioxide was less than that from a HALS-free polypropylene film of similar thickness. The amount of photogenerated CO2 was greatest in oxygen that had been pre-saturated with water and the amount of CO2 evolved depended on the grade of HALS. In dry oxygen, although the differences between the films containing different HALS were much reduced the amount of CO2 continued to be smaller than that from the HALS-free polymer. The sensitivity of CO2 photogeneration to the presence of HALS provides new evidence of the relevance of the CO2 photogeneration method to the diagnosis of photosensitivity of polymers and the influence of stabilizing additives.  相似文献   

2.
In situ infrared (FTIR) spectrometry has demonstrated that more CO2 is photogenerated from polypropylene (PP) than from polyethylene (PE) films. Potential applications of the method include investigation of polymer degradation mechanism and ranking of polymer photo-stabilities in as little as 3 h.This study focuses on clarifying the mechanism of this rapid CO2 formation from PE and PP, and complementary insight was obtained from changes in the IR transmission spectra of films irradiated by UVA for hundreds of hours. A 30 min induction time observed for CO2 photogeneration from PP, but not PE, was reflected, on a much longer time scale, in the induction time for carbonyl development in PP, but not PE. This suggests that, in PP, the CO2 induction time is a consequence of the slow development of carbonyl groups, a hypothesis that is supported by the elimination of the PP induction time when, prior to the CO2 measurements, films are pre-exposed to UVA, to generate carbonyl groups. In addition, more CO2 is evolved from both PE and PP films if they are pre-exposed.  相似文献   

3.
Carbon dioxide evolution from poly(ethylene terephthalate) (PET) films during ultraviolet (UV) exposure has been monitored using FTIR interrogation of the atmosphere surrounding the test pieces. Measurement periods as little as 4 h could easily discriminate between CO2 emission rates when tests were conducted to investigate the effect of using different reaction atmospheres or of including UV absorber in the PET samples. Samples containing UV absorbers either homogeneously distributed through the film or in thin surface layers (∼0.7 μm thick) were also tested. Relatively small reductions in CO2 emission rates were observed with samples containing UV absorbers but the rates were not very sensitive to the distribution and concentration of the absorbers. A thin surface layer containing only 2% stabiliser (equivalent to 0.23% stabiliser when averaged over the whole film thickness) provided oxidation reduction similar to that observed when 1% stabiliser was distributed evenly throughout the sample. Tests were conducted in wet oxygen, dry oxygen and dry nitrogen. For as-received bi-axially drawn PET film containing no absorber, the CO2 emission rate under UV illumination in wet oxygen was much higher than in dry oxygen or dry nitrogen. For as-received PET the difference between the rates observed in dry oxygen and dry nitrogen was small. For PET films that had been pre-exposed to UV (for 9 days) prior to insertion into the in situ CO2 measurement cell the rate of CO2 generation in oxygen was significantly larger than that in nitrogen. In both nitrogen and oxygen the presence of UV absorbers significantly decreased the rate of CO2 generation.  相似文献   

4.
A novel method, allowing simultaneous UV exposure of a polymer sample and IR interrogation of the vapour in a specially constructed cell, has been applied to polyethylene (PE) samples containing TiO2 pigments with different photoactivities. Measurements of the CO2 generated by films exposed to ultraviolet irradiation (UV) were completed in 5 h - very much less than conventional accelerated tests. The TiO2 pigments used included anatase and rutiles with different surface treatments. Anatase pigmented material gave significantly higher CO2 emission than unpigmented PE whilst rutile-pigmented PEs either gave reduced CO2 emission or enhanced emission, according to the surface treatment. The ranking of the pigments as protectants or pro-degradants correlated well with the carbonyl index measured after more than 300 h exposure to UVA fluorescent tubes in a QUV machine.The method was then used to probe mechanistic aspects of the photo-oxidation of pigmented polyethylene (PE) film. For unpigmented polymer the photo-degradation was sensitive to changes in the small fraction of incident UV below 300 nm, but for pigmented films this was much less important. This is because unpigmented film degrades by direct photochemical attack whereas, for pigmented film, photocatalysis by TiO2, which absorbs in the 300-400 nm region, is important. For films whose photo-oxidation was dominated by photocatalysis by the TiO2 the rate of oxidation was shown to vary as the square root of the UV intensity. By contrast, for unpigmented films the rate of direct photochemical oxidation was linearly proportional to UV intensity. The difference is a consequence of the controlling role of electron-hole recombination in photocatalytic processes. For both unpigmented and pigmented films the rate of oxidation was shown to increase with increasing humidity and oxygen content of the atmosphere.  相似文献   

5.
Effect of different nanoparticles on HDPE UV stability   总被引:1,自引:0,他引:1  
In the present study different series of HDPE nanocomposites were prepared by melt mixing on a Haake-Buchler Reomixer, containing 2.5 wt% of multiwall carbon nanotubes, pristine and modified montmorillonite, and SiO2 nanoparticles. Nanocomposites in the form of thin films were exposed to UV irradiation at 280 nm at constant temperature (25 °C) and constant relative humidity (50%) for several times. From tensile strength and Young’s Modulus measurements it was verified a high increase with initial UV irradiation times (till 100 h) and a slight reduction thereafter. The increase was higher in nanocomposites compared with neat HDPE, except these containing MWCNTs, and was attributed to the crystallinity increase in the particular samples. The mechanical properties reduction at higher UV irradiation times was attributed to the extensive macromolecular chain scission causing irregularities and holes in film surfaces. However, from FTIR study it was found that SiO2 and organically modified montmorillonite cause a serious effect on HDPE during UV degradation. New chemical compounds containing carbonyl, vinyl and hydroxyl groups were formed. It seems that these nanoparticles have an accelerating effect acting as catalysts to HDPE photo-oxidation. This was also verified from micro-Raman analysis. Untreated montmorillonite has also a small influencing effect while neat HDPE and nanocomposites containing multiwall carbon nanotubes have the highest UV stability.  相似文献   

6.
A set of opaque films were prepared with Degussa P25® or Hombikat UV100® TiO2 powders by the doctor blade method on glass slides with different compositions of polyethylene glycol of 20 kDa (PEG20), and they were characterized by spectroscopy, microscopy and photochemical kinetics measurements. After annealing treatment at 450 °C, about 5–7% C atom was incorporated into the films, as a consequence of the degradation of the organic complexing agents, inducing a small reduction of the energy band gap of TiO2 (i.e. 3.02 ≤ Eg (eV) ≤ 3.08). All films were about 15 ± 2 μm thick but their micro‐morphological characteristics depended on the content of PEG20, showing different patterns of cracks and aggregates that produce intense light scattering and retransmission phenomena with the result of a three‐dimensional excitation of the TiO2 particles in the thick film. Back‐face excitation with UVA light (365 ± 42 nm) of the opaque films in contact with an aqueous solution produced both surface‐bound and free hydroxyl radicals (HO?), as detected using a coumarin solution as a radical dosimeter. The photogeneration efficiency of HO? decreased with the surface roughness of the films, which varied between 135 and 439 nm depending on the film's composition.  相似文献   

7.
Photodegradation of low density polyethylene (LDPE) containing nano-particulate ZnO has been studied using FTIR to follow the development of oxidation products in the polymer film and to monitor carbon dioxide evolved as a principal product of oxidation. The degradation behaviour of ZnO-free LDPE has been compared with that of compounds containing 0.25% and 0.75% ZnO and these results are compared with those obtained using similar films containing nano-particulate TiO2. Under UV exposure, the presence of ZnO accelerated the development of carbonyl groups and CO2 production. The carbonyl group development was more rapid when TiO2 was used whereas ZnO caused greater CO2 generation. Carbonyl group development seemed to correlate better with the reduction in mechanical properties whereas CO2 generation correlated better with weight change measurements. The influence of ZnO on the oxidation pathways in LDPE is discussed; it is proposed that photo-oxidation is relatively much more likely to occur at terminal sites (rather than at pendent sites) when ZnO is present.  相似文献   

8.
Poly(vinylalcohol) (PVA)/poly(ethyleneimine) (PEI)/poly(ethyleneglycol) (PEG) blend membranes were prepared by solution casting followed by solvent evaporation. The effects of the blend polymer composition on the membrane structure and CO2/N2 permeation characteristics were investigated. IR spectroscopy evidenced strong hydrogen bonding interactions between amorphous PVA and PEI, and weaker interactions between PVA and PEG. DSC studies showed that PVA crystallization was partially inhibited by the interactions between amorphous PVA and PEI blend, in which PEG separated into nodules. The CO2 permeability decreased with an increase in CO2 partial pressure in feed gas, while the N2 permeability remained constant. This result indicated that only CO2 was transported by the facilitated transport mechanism. The CO2 and N2 permeabilities increased monotonically with the PEI content in the blend membranes, whereas the ideal selectivity of CO2 to N2 transport showed a maximum. When CO2 is humidified, its permeability through the blend membranes is much higher than that of dry CO2, but the change in permeability due to the presence of humidity is reversible.  相似文献   

9.
The effects of humidity on gas permeation were studied for five SAPO-34 membranes with different fractions of permeation through non-SAPO pores. Membranes with high CO2/CH4 separation selectivities (>20) were stable in humidified gases, but degradation was seen for some membranes after months of exposure to the laboratory atmosphere. Once the membranes started to degrade, the rate of degradation appeared to accelerate. The degradation created non-SAPO pores that were larger than the SAPO-34 pores, as indicated by i-C4H10 permeance, CO2/CH4 selectivity, and CO2 flux dependence on pressure. The effect of humidity on gas permeance correlated with these indicators of non-SAPO pores. Adsorbed water appeared to completely block the SAPO pores, but permeation through non-SAPO pores increased with humidity. Therefore, water adsorption can be used to determine membrane quality and the fraction of transport through non-SAPO pores.  相似文献   

10.
We report the electrochemical reduction of CO2 into hydrocarbons using a new electrochemical membrane reactor holding a yet unreported membrane electrode assembly comprising a copper mesh cathode and a Ti felt coated with mixed metal oxide (MMO) catalyst anode separated by a proton conductive membrane. CO2(g) was supplied to the cathodic reduction compartment, whilst humidified N2 was supplied to the anodic oxidation compartment. The MMO anode produces protons transported across the proton exchange membrane and electrons transported via the external circuit to the copper cathode to reduce CO2(g). Production rates of methane, propane, propene, iso-butane and n-butane were determined as a function of cell potential at temperatures between 30 and 70 °C and relative humidity between ca. 25% and 75%. Maximum methane concentration and the current efficiency for production of hydrocarbons were 3.29 ppm and 0.12%, respectively. Whilst the observed product spectrum is desirable, such low current efficiencies require systematic optimization of the catalytic membrane system, in particular an improved cathode with an optimum contact between proton conducting membrane, electrode and catalyst is desired.  相似文献   

11.
Visible light-responsive TiO2 (Vis-TiO2) thin films able to absorb UV and visible light in wavelength regions of 250–600 nm were successfully developed by applying a radio-frequency magnetron sputtering deposition method. These Vis-TiO2 thin films exhibited high activity for the photocatalytic oxidation of 2-propanol diluted in water even under visible light irradiation (λ ≥ 450 nm). The photocatalytic activity of Vis-TiO2 thin films was dramatically enhanced by the deposition of Pt particles on the surface. Secondary ion mass spectrometry measurements revealed that Pt particles are distributed from the top surface to the deep bulk of Vis-TiO2 thin films with a columnar structure. The unique columnar structure of Vis-TiO2 thin films plays an important role in the high photocatalytic performance.  相似文献   

12.
In this work, the UV sensing properties of Sn-doped and/or alloyed zinc oxide (ZnO) microstructures with different morphologies were investigated in order to elaborate the high performance UV photodetectors. We have compared two types of morphologies, i.e. Sn-doped ZnO films (ZnO:Sn) and ZnO microtetrapod (T) networks alloyed- and doped-with Sn (ZnO-T:Sn). The UV response (IUV/Idark) of ZnO:Sn is about 103 and 102 for 0.1 and 0.4 at% Sn, respectively. The three-dimensional highly porous ZnO-T:Sn networks demonstrated higher UV response (by two orders of magnitude) and much faster recovery for detection of UV light, which were attributed to the domination of fast processes such as modulation of potential barriers formed at the interface of the tetrapod arms, which are less dependent on adsorbed species. Thus, the UV response for devices with a distance between the pads (interelectrode distance) of about 60, 400, 800 and 1500 μm is 1.7 × 105, 2.4 × 104, 6.7 × 103 and 925, respectively. All samples demonstrated a sharp increase in photocurrent under illumination with UV light, as well as a fast recovery to the initial electrical baseline. Also, the influence of relative humidity on the rapidity of photodetectors based on ZnO:Sn films and ZnO-T:Sn networks was investigated, confirming a low impact on the rapidity of ZnO-T:Sn networks, with good repeatability and stable electrical baseline, which is very important for effective applications.  相似文献   

13.
Optically transparent silica films were prepared at room temperature (~27°C) by keeping the molar ratio of TEOS:MeOH:H2O (0.001 M NH4F) constant at 1:19.29:6.20, respectively. A surface chemical modification of the films was done with alkylchlorosilanes at different concentrations from 0 to 1 vol. % and aging times varied from half to 2 h. The DMCS and TMCS surface modified silica films showed the static water contact angle of 146° and 162°, respectively. When the DMCS and TMCS modified films were cured at temperatures higher than 240 and 275°C, respectively, the films became superhydrophilic. Further, the humidity study was carried out at a relative humidity of 90% at 30°C temperature over 60 days. We characterized the water repellent silica films by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy, % of optical transmission, humidity tests and contact angle measurements.  相似文献   

14.
Composite hollow fibers membranes were prepared by coating poly(phenylene oxide) (PPO) and polysulfone (PSf) hollow fibers with high molecular polyvinylamine (PVAm). Two procedures of coating hollow fibers outside and respective inside were investigated with respect to intrinsic PVAm solution properties and hollow fibers geometry and material.The influence of operating mode (sweep or vacuum) on the performances of membranes was investigated. Vacuum operating mode gave better results than using sweep because part of the sweep gas permeated into feed and induced an extra resistance to the most permeable gas the CO2. The composite PVAm/PSf HF membranes having a 0.7–1.5 μm PVAm selective layer, showed CO2/N2 selectivity between 100 and 230. The selectivity was attributed to the CO2 facilitated transport imposed by PVAm selective layer. The CO2 permeance changed from 0.006 to 0.022 m3(STP)/(m2 bar h) in direct correlation with CO2 permeance and separation mechanism of the individual porous supports used for membrane fabrication. The multilayer PVAm/PPO membrane using as support PPO hollow fibers with a 40 nm PPO dense skin layer, surprisingly presented an increase in selectivity with the increase in CO2 partial pressure. This trend was opposite to the facilitated transport characteristic behaviour of PVAm/porous PSf. This indicated that PVAm/PPO membrane represents a new membrane, with new properties and a hybrid mechanism, extremely stable at high pressure ratios. The CO2/N2 selectivity ranged between 20 and 500 and the CO2 permeance from 0.11 to 2.3 m3(STP)/(m2 bar h) depending on the operating conditions.For both PVAm/PSf and PVAm/PPO membranes, the CO2 permeance was similar with the CO2 permeance of uncoated hollow fiber supports, confirming that the CO2 diffusion rate limiting step resides in the properties of the relatively thick support, not at the level of 1.2 μm thin and water swollen PVAm selective layer. A dynamic transfer of the CO2 diffusion rate limiting step between PVAm top layer and PPO support was observed by changing the feed relative humidity (RH%). The CO2 diffusion rate was controlled by the PPO support when using humid feed. At low feed humidity the 1.2 μm PVAm top layer becomes the CO2 diffusion rate limiting step.  相似文献   

15.
Synergistic effects of sunlight exposure, thermal aging and fungal biodegradation on the oxidation and biodegradation of linear low density poly(ethylene) PE-LLD films containing pro-oxidant were examined. To achieve oxidation and degradation, films were first exposed to the sunlight for 93 days during the summer months followed by their incubation with fungal strains previously isolated from the soil based on the ability to grow on the oxidized PE-LLD as a sole carbon source. Some films were also thermally aged at temperatures ranging between 45°C and 65 °C, either before or after fungal degradation. Films with pro-oxidant additives exhibited a higher level of oxidation as revealed by increase in their carbonyl index (COi). In addition to increase in the COi, films showed a slight increase in crystallinity and melting temperature (Tm), considerably lower onset degradation temperatures, and a concomitant increase in the % weight of the residues. The level of oxidation observed in thermally aged films was directly proportional to the aging temperature. The PE-LLD films with pro-oxidant exposed to sunlight followed by thermal aging showed even higher rate and extent of oxidation when subsequently subjected to fungal biodegradation. The higher oxidation rate also correlated well with the CO2 production in the fungal biodegradation tests. Similar films oxidized and aged but not exposed to fungal biodegradation showed much less degradation. Microscopic examination showed a profuse growth and colonization of fungal mycelia on the oxidized films by one strain, while another spore-producing strain grew around the film edges. Data presented here suggest that abiotic oxidation of polymer's carbon backbone produced metabolites which supported metabolic activities in fungal cells leading to further biotically-mediated polymer degradation. Thus, a combined impact of abiotic and biotic factors promoted the oxidation/biodegradation of PE-LLD films containing pro-oxidants.  相似文献   

16.
The MoO3 thin films were prepared via sol–gel dip coating method on glass and FTO glass substrate. The optical and other properties of multilayered MoO3 films with 2–10 layers were investigated. The MoO3 films were studied using UV–Visible transmission, XRD, SEM, FTIR and Cyclic Voltammetry (CV) measurements. The band gap value for MoO3 films was evaluated and in the range of 3.2 eV–3.72 eV. The XRD spectrum reveals that the crystallinity increases along the (020) and (040) planes with the increase in thickness. The SEM images showed the formation of nanorods upto six layers. The FTIR spectrum confirms the formation of MoO3. The 6 layered films show the maximum anodic (spike)/cathodic (peak) diffusion coefficient of 18.84/1.701 × 10?11 cm2/s. The same film exhibits the change in optical transmission of 49% with the bleached/coloured state transmission of 62/13%.  相似文献   

17.
The development of cost-effective sorbents for direct capture of trace CO2 (<1 %) from the atmosphere is an important and challenging task. Natural or commercial zeolites are promising sorbents, but their performance in adsorption of trace CO2 has been poorly explored to date. A systematic study on capture of trace CO2 by commercial faujasite zeolites reveals that the extra-framework cations play a key role on their performance. Under dry conditions, Ba−X displays high dynamic uptake of 1.79 and 0.69 mmol g−1 at CO2 concentrations of 10000 and 1000 ppm, respectively, and shows excellent recyclability in the temperature-swing adsorption processes. K−X exhibits perfect moisture resistance, and >95 % dry CO2 uptake can be preserved under relative humidity of 74 %. In situ solid-state NMR spectroscopy, synchrotron X-ray diffraction and neutron diffraction reveal two binding sites for CO2 in these zeolites, namely the basic framework oxygen atoms and the divalent alkaline earth metal ions. This study unlocks the potential of low-cost natural zeolites for applications in direct air capture.  相似文献   

18.
KMnO4-treated functionalized biaxially oriented polypropylene (BOPP) films coated with a hybrid material were synthesized, and the abrasion resistance properties of the resultant films were examined. The presence of functional groups was confirmed using Fourier-transform infrared spectroscopy, transmittance measurements were performed using an ultraviolet–visible spectrophotometer, and the intensities of the films were measured using a universal testing machine. The abrasion resistance and roughness of the composite films were significantly affected by modification of the BOPP film. The transmittance of the modified films obviously improved with the addition of Al2O3 sol, and the mechanical properties of the treated films were improved by the coatings. The abrasion resistance of one of the functionalized films (sample S159) increased by 79.5 % compared with that of the original film.  相似文献   

19.

Photosynthetic mitigation of CO2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO2 fixation rate was observed at 15% CO2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO2 fixation was 0.12 ± 0.002 g/l/day at 15% CO2 concentration. The carbohydrate and lipid content were maximum at 25% CO2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO2 concentration.

  相似文献   

20.
Poly(vinylpyrrolidone) films containing cobalt chloride or iodine were investigated to obtain information on their possible use as a humidity sensor element. FTIR and UV‐VIS spectroscopies were used to characterize the PVP–I2 and PVP–Co complexes. Infrared spectroscopy revealed a structural change of both shape and intensity of the carbonyl and lactam bands, indicating the formation of an ion‐coordination polymer. The J–E curves for pure PVP, PVP–I2, and PVP–Co films obey ohm's law at low voltages, deviate from the linear response at higher voltages, and finally display breakdown behavior. An increase in current density of the PVP matrix with iodine or cobalt doping is attributed to the formation of charge transfer complexes. The observed hysteresis of the I–V characteristics implies that there was some standing voltage in the film, which could be attributed to a disorientation of polar side groups of PVP. The electrical conductivities of the polymeric complexes were very sensitive to environmental humidity. An explanation of the humidity‐sensing behavior of the PVP–I2 and PVP–Co complexes is presented. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 459–469, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号