首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epoxy resin reinforced with 3D parabeam glass fibre was subjected to low earth orbit (LEO) simulation conditions comprising ultra high vacuum, temperature cycling (TC), and ultraviolet (UV) radiation and atomic oxygen (AO) bombardment. Inspection of the same composite using only a selection of these hazardous conditions provided comparison measures to identify the effect of each condition on the surface degradation of the resin composite. Each of the individually selected conditions showed a different degradation mechanism that is accelerated by the presence of other conditions. X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and scanning electron microscopy (SEM) were used to provide surface information. The resin composite samples suffered surface oxidation that increased the oxygen content to 17.24% in comparison with the untreated sample (only 14.2%). The samples that were treated with AO showed higher C-O and CO functional groups on the surface in comparison with the rest of the samples (as indicated by XPS). Molecular information (from ToF-SIMS) showed that surface oxidation differs with different conditions and in comparison with the use of all conditions. All treated samples were shown to suffer significant chain scission and loss of volatiles as a result of the LEO conditions. The extent of the chain scission reaction for each condition can be indicated by the extent of the reduction of the relative concentration of the aliphatic hydrocarbon ions. The relative intensity of the C4H11N4O2+ ion showed that AO bombardment accelerated the oxidation of the surface. The AO effect is doubled when UV and TC are also present. SEM results indicated that sample surfaces were eroded and roughened upon exposure to LEO conditions. Presence of AO and UV in the LEO conditions introduced white deposits onto the surface, believed to be crosslinked formations.  相似文献   

2.
Carbon fibre (CF), carbon nanotube (CNT), nano-clay (NanoC), and 3D-glass (3DG) reinforced polymer composites were selected to undergo treatment with an accelerated Low Earth Orbit (LEO) simulated space environment. Surface degradation mechanisms of the selected polymer composites with different types of reinforcements are discussed. The extent of the oxidation reaction at the surface as a result of LEO exposure was linked to the increase in the intensity of the oxygen-containing ions, as revealed by time-of-flight secondary ion mass spectrometry (ToF-SIMS). X-ray photoelectron spectroscopy (XPS) indicated that an increasing duration of surface treatment correlates with increasing oxygen concentration and decreasing carbon concentration. The degraded CF composite showed the least amount of oxygen (15.6%) and nitrogen (2.5%) on the surface, likely indicating less surface degradation. Further, XPS high resolution region scans showed decreases in the overall carbon concentration accompanied increases in oxygen-containing carbon species C-O, CO and O-CO; functional groups which are attributed to the LEO treatment of the composite materials. All the sample surfaces were eroded upon exposure to LEO conditions with erosion mostly confined to encapsulating epoxy resin.  相似文献   

3.
The main challenges in the manufacture of composite materials are low surface energy and the presence of silicon‐containing contaminants, both of which greatly reduce surface adhesive strength. In this study, carbon fiber (CF) and E‐glass epoxy resin composites were surface treated with the Accelerated Thermo‐molecular adhesion Process (ATmaP). ATmaP is a multiaction surface treatment process where tailored nitrogen and oxygen functionalities are generated on the surface of the sample through the vaporization and atomization of n‐methylpyrrolidone solution, injected via specially designed flame‐treatment equipment. The treated surfaces of the polymer composites were analyzed using XPS, time of flight secondary ion mass spectrometry (ToF‐SIMS), contact angle (CA) analysis and direct adhesion measurements. ATmaP treatment increased the surface concentration of polar functional groups while reducing surface contamination, resulting in increased adhesion strength. XPS and ToF‐SIMS showed a significant decrease in silicon‐containing species on the surface after ATmaP treatment. E‐glass composite showed higher adhesion strength than CF composite, correlating with higher surface energy, higher concentrations of nitrogen and C?O functional groups (from XPS) and higher concentrations of oxygen and nitrogen‐containing functional groups (particularly C2H3O+ and C2H5NO+ molecular ions, from ToF‐SIMS). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, the reinforcing mechanism of amine functionalized on carbon fibers (CFs) has been precisely discussed, and the differences between aliphatic and aromatic compounds have been illustrated. Polyacrylonitrile‐based CFs were functionalized with ethylenediamine, 4,4‐diaminodiphenyl sulphone, and p‐aminobenzoic acid (PAB), and CF‐reinforced epoxy composites were prepared. The structural and surface characteristics of the functionalized CFs were investigated using X‐ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT‐IR), and scanning electron microscopy (SEM). Mechanical properties in terms of tensile and flexural strengths and moduli were studied. The FT‐IR results confirm the success in bonding amines on the CF surface. After treatment of CFs, the oxygen and nitrogen contents as well as the N/C ratio showed an increase. XPS results provided evidence of the chemical reaction during functionalization, rather than being physically coated on the CF surface. Chemical modification of CF with diamines led to considerable enhancement in compatibility of CF filaments and epoxy resin, and remarkable improvements were seen in both tensile and flexural properties of the reinforced composites. SEM micrographs also confirmed the improvement of interface adhesion between the modified CFs and epoxy matrix. Finally, it can be concluded that PAB is a promising candidate to functionalize CF in order to improve interfacial properties of CF/epoxy composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
采用响应面分析方法设计超临界正丁醇降解废弃的碳纤维/环氧树脂(CF/EP)复合材料降解实验,用以回收碳纤维.通过Design-Expert V8.0建立环氧树脂降解率和工艺参数之间的数学模型,获得了最优工艺参数;通过图形优化研究了工艺参数对环氧树脂基体降解率的影响规律;通过场发射电子扫描显微镜、原子力显微镜、X射线光电子能谱仪、显微共焦激光拉曼光谱仪及单丝拉伸等分析最优工艺参数下回收的碳纤维的表面形貌、表面化学、石墨化程度及力学性能.结果表明,建立的数学模型拟合误差范围为±5.5%,实现了回收工艺参数的预估;单因素对环氧树脂基体降解率的影响程度为:反应温度保温时间添加剂浓度正丁醇含量;最优工艺参数为:反应温度330℃,保温时间60 min,添加剂浓度0.0538 mol/L,投料比0.024g/mL.回收的碳纤维表面无残留树脂,没有发生明显的石墨化,且表面平均粗糙度与原碳纤维相近;与原始碳纤维相比,回收的碳纤维的拉伸强度约为原碳纤维的93.58%,杨氏模量约为原碳纤维的94.87%.  相似文献   

6.
Poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) copolymers with various grafting ratios were adsorbed to niobium pentoxide-coated silicon wafers and characterized before and after protein adsorption using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Three proteins of different sizes, myoglobin (16 kD), albumin (67 kD), and fibrinogen (340 kD), were studied. XPS was used to quantify the amount of protein adsorbed to the bare and PEGylated surfaces. ToF-SIMS and principal component analysis (PCA) were used to study protein conformational changes on these surfaces. The smallest protein, myoglobin, generally adsorbed in higher numbers than the much larger fibrinogen. Protein adsorption was lowest on the surfaces with the highest PEG chain surface density and increased as the PEG layer density decreased. The highest adsorption was found on lysine-coated and bare niobium surfaces. ToF-SIMS and PCA data evaluation provided further information on the degree of protein denaturation, which, for a particular protein, were found to decrease with increasing PEG surface density and increase with decreasing protein size.  相似文献   

7.
Carbon fabric (CF) was surface treated with silane-coupling agent modification, HNO3 oxidation, combined surface treatment, respectively. The friction and wear properties of the carbon fabric reinforced phenolic composites (CFP), sliding against GCr15 steel rings, were investigated on an M-2000 model ring-on-block test rig. Experimental results revealed that combined surface treatment largely reduced the friction and wear of the CFP composites. Scanning electron microscope (SEM) investigation of the worn surfaces of the CFP composites showed that combined surface modified CFP composite had the strongest interfacial adhesion and the smoothest worn surface under given load and sliding rate. SEM and X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the fiber surface became rougher and the oxygen concentration increased greatly after combined surface treatment, which improved the adhesion between the fiber and the phenolic resin matrix and hence to improve the friction-reduction and anti-wear properties of the CFP composite.  相似文献   

8.
Epoxy resin composites reinforced with hollow glass microspheres, microlight microspheres, 3D parabeam glass, and E-Glass individually were subjected to accelerated thermal degradation conditions. X-ray microcomputed tomography (XμCT) was used to evaluate density changes, reinforcement filler damage, homogeneity, cracks and microcracks in the bulk of the different epoxy resin composites. XμCT 3D images, 2D reconstructed images and voids calculations revealed microspheres damage, filler distributions and showed cracks in all composites with different shapes and volume in response to the thermal degradation conditions. In addition, expansion of air bubbles/voids was observed and recorded in the microsphere and microlight epoxy composite samples. In a complementary way, optical coherence tomography (OCT) was used as a novel optical characterisation technique to study structural changes of the surface and near-surface regions of the composites, uncovering signs of surface shrinkage caused by the thermal treatment. Thus, combining XμCT and OCT proved useful in examining epoxy resin composites' structure, filler-resin interface and surface characteristics.  相似文献   

9.
The carbon fiber (CF) surface plays a critical role in the performance of CF composite materials. Adipic acid modified epoxy resin potassium (AAEK) prepared with epoxy resin and adipic acid, and KOH was employed as the CF sizing agent. Then, series of surface properties of AAEK‐treated carbon fiber (CF‐AAEK) including surface charge, morphology, and groups were characterized by using Faraday cup, friction coefficient gauge, atomic force microscopy, X‐ray photoelectron spectroscopy, and thermogravimetry. The results indicated that the dispersion coefficient of CF‐AAEK was increased by 1.72 times and there were synergistic effects for the dispersion of short CFs during the sizing treatment process with AAEK. In addition, the flexural strength of treated short CF composite proved to increase by 168%, which evaluated that the better CF dispersion in the matrix was a critical factor for the mechanical property improvement of short CF‐AAEK/epoxy resin composites.  相似文献   

10.
Metallocene and Ziegler-Natta (ZN) linear low density polyethylenes (LLDPEs) of different branch types and contents as well as linear high density polyethylene (HDPE) were exposed to natural and accelerated weather conditions. The degree of UV degradation of exposed samples was measured by rheological techniques and results were compared with unexposed polymers. Dynamic shear measurements were performed in an ARES rheometer in the linear viscoelastic range. The degree of enhancement or reduction in viscosity and elasticity was used as a measure of the degree of cross-linking or chain scission, respectively. The degradation results of LLDPE suggest that both cross-linking and chain scission are taking place. Chain scission dominated the degradation at high levels of short chain branching (SCB) and long exposure times. The degradation mechanism of m-LLDPE and ZN-LLDPE is similar; however, m-LLDPE showed a higher degradation rate than ZN-LLDPE of similar Mw and average SCB. ZN-LLDPE was found to be more stable than a similar m-LLDPE. Comonomer type had little influence on degradation. Dynamic shear rheology was very useful in revealing the influence of different molecular parameters and it exposed the degradation mechanism.  相似文献   

11.
Recently synthesized (Winter, R.; Nixon, P. G.; Gard, G. L.; Radford, D. H.; Holcomb, N. R.; Grainger, D. W. J. Fluorine Chem. 2001, 107, 23-30) SF5-terminated perfluoroalkyl thiols (SF5(CF2)nCH2CH2SH, where n = 2, 4, and 6) and a symmetric SF5-terminated dialkyl disulfide ([SF5-CH=CH-(CH2)8-S-]2) were assembled as thin films chemisorbed onto gold surfaces. The adsorbed monolayer films of these SF5-containing molecules on polycrystalline gold were compared using ellipsometry, contact angle, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and infrared spectroscopy (FTIR) surface analytical methods. The resulting SF5-dialkyl disulfide monolayer film shows moderate angle dependence in depth-dependent XPS analysis, suggesting a preferentially oriented film. The SF5-terminated perfluoroalkyl thiols exhibit angular-dependent XPS compositional variance depending on perfluoroalkyl chain length, consistent with improved film assembly (increasingly hydrophobic, fewer defects, and more vertical chain orientation increasing film thickness) with increasing chain length. Tof-SIMS measurements indicate that both full parent ions for these film-forming molecules and the unique SF5 terminal group are readily detectable from the thin films without substantial contamination from other adsorbates.  相似文献   

12.
We employ a direct method, time-of-flight secondary ion mass spectroscopy (ToF-SIMS), to determine experimentally the chemical compositions of the wetted and dewetted regions of an uncured epoxy thin film. Determining the composition of the dewetted region indicated the presence of a very thin sublayer of resin in what was thought to be a region devoid of resin. The capability of ToF-SIMS to probe small 65 x 65 microm(2) areas of the surface has permitted us to directly compare the SIMS spectra of the wetted and dewetted regions to the survey spectra of the reactants. This may indicate the strength of resin/silica interactions, which determine interface formation and properties.  相似文献   

13.
In this work, the application of an epoxy resin cured with ammonium ionic liquids as a support for palladium complex catalyst is reported. Supports based on epoxy resin were obtained as a result of the use of ionic liquids: didecyldimethylammonium tetrafluoroborate [d2m2am][BF4], 1-methyltheobromine tetrafluoroborate [mthb][BF4], didecyldimethylammonium theobrominate [d2m2am][thb], didecyldimethylammonium theophyllinate [d2m2am][thp] as cross-linking agents. The characterization of polymeric supports and heterogenized palladium catalysts has involved research methods like time-of-flight secondary ion mass spectrometry (TOF-SIMS), infrared spectroscopy (IR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS). The activity and stability during long-term use of the investigated catalytic systems were tested in a model Heck reaction. The influence of the type of ILs used as epoxy hardeners on the catalytic properties of epoxy-supported palladium catalysts is discussed.  相似文献   

14.
The evolvement of chemical structure and thermal-mechanical properties of diglycidyl ether of bisphenol-A and novolac epoxy resin blends cured with low molecular polyamide (DGEBA/EPN/LMPA system) during thermal-oxidative aging were investigated by Attenuated Total Reflectance Fourier Transform Infrared spectrometry (ATR-FTIR) and Dynamic Mechanical Thermal Analysis (DMTA). The results revealed that the chemical reactions during thermal-oxidative aging contained oxidation and chain scission. Some possible chemical reaction processes were given. There was a new compound formed during aging processes and the change of its glass transition temperature (Tg) with aging time followed an exponential law. In addition, the changes of dynamic mechanical behavior of this epoxy system aged at four different temperatures (110 °C, 130 °C, 150 °C, 170 °C) were compared. An empirical formula was obtained through kinetic analysis and this formula can be used to predict the oxidative degree of the surface at different aging temperature.  相似文献   

15.
In this study, we investigated the influence of epoxy resin treatment on the mechanical and tribological properties of hemp fiber (HF)-reinforced plant-derived polyamide 1010 (PA1010) biomass composites. HFs were surface-treated using four types of surface treatment methods: (a) alkaline treatment using sodium chlorite (NaClO2) solution, (b) surface treatment using epoxy resin (EP) solution after NaClO2 alkaline treatment, (c) surface treatment using an ureidosilane coupling agent after NaClO2 alkaline treatment (NaClO2 + A-1160), and (d) surface treatment using epoxy resin solution after the (c) surface treatment (NaClO2 + A-1160 + EP). The HF/PA1010 biomass composites were extruded using a twin-screw extruder and injection-molded. Their mechanical properties, such as tensile, bending, and dynamic mechanical properties, and tribological properties were evaluated by the ring-on-plate-type sliding wear test. The strength, modulus, specific wear rate, and limiting pv value of HF/PA1010 biomass composites improved with surface treatment using epoxy resin (NaClO2 + A-1160 + EP). In particular, the bending modulus of NaClO2 + A-1160 + EP improved by 48% more than that of NaClO2, and the specific wear rate of NaClO2 + A-1160 + EP was one-third that of NaClO2. This may be attributed to the change in the internal microstructure of the composites, such as the interfacial interaction between HF and PA1010 and fiber dispersion. As a result, the mode of friction and wear mechanism of these biomass composites also changed.  相似文献   

16.
This work describes the influence of silica fillers on the thermomechanical properties of diglycidyl ether of bisphenol A/triethylenetetramine (DGEBA/TETA) epoxy resins during ageing under electron beam irradiation. Whatever be the silica filler (pure micrometric ground and spherical silicas, nanometric silicas and coupling agent treated silicas), the glass transition temperature of the epoxy resins decreases with increasing irradiation dose, meaning that the main effect of the irradiation is chain scission. No influence of the silica fillers has been detected from the changes in the glass transition temperature with the increase in the irradiation dose. The disappearance of the cooperativity of the γ relaxation, the decrease of the α relaxation and the decrease of the elastic modulus at the rubbery plateau observed by dynamic mechanical analyses involve a decrease in the crosslink density of the epoxy resins. The occurrence of chemical reactions between the epoxy resin and the silica surface at high irradiation doses has been shown. Moreover, we show evidence that chemical reactions between the epoxy resin and the silica surface occur at high irradiation dose.  相似文献   

17.
To improve the interfacial properties of carbon fibre-reinforced polymer composites, a surface treatment was used to cap cross-linked poly-itaconic acid onto carbon fibres via in-situ polymerization after itaconic acid grafting. The chemical composition of the modified carbon fiber (CF) surface was characterized by X-ray photoelectron spectral and Fourier-transform infrared spectroscopy. Scanning electron microscopy and atomic force microscopy images showed that the poly-itaconic acid protective sheath was uniformly capped onto the CF surface and that the surface roughness was obviously enhanced. Chemical bonds also played a key role in the interfacial enhancement. The results showed that the interfacial shear strength of the composites with poly-itaconic acid on the carbon fibres (72.2 MPa) was significantly increased by 89.5% compared with that of the composites with pristine CF (38.1 MPa). Moreover, the poly-itaconic acid sheath promoted a slight increase in mono-fibre tensile strength. In addition, the interfacial mechanisms were also discussed. Meanwhile, the mechanical property of the functionalized CF/epoxy resin composites was also significantly improved.  相似文献   

18.
With a view to develop an encapsulation membrane for a bioartificial pancreas, we have studied the adsorption of insulin and human serum albumin (HSA) on it. The aim of this study was to determine the possibility of insulin detection on a polycarbonate membrane surface in the presence of HSA, an abundant blood protein. The first step of the work consisted in the identification of time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) specific signals for insulin and albumin. For this purpose, adsorption isotherms in physiological conditions (pH = 7.2, T = 37 degrees ) were established for the two proteins by looking at the SIMS intensity variations of the characteristic protein and substrate fragments when increasing the protein concentration in the solution. The CHS+ ToF-SIMS fragment and the S2p XPS peak were identified as representative insulin signals. The second step of the work consisted in performing simultaneous adsorption of the two proteins with increasing insulin concentration. We observed an increase of the insulin signal in ToF-SIMS and XPS for insulin concentration beyond 5 microg/mL. Principal component analysis (PCA) of the ToF-SIMS results permits us to obtain information about the protein layer composition. The results show that at low relative insulin concentration in solution, the mixed adsorbed layers are enriched in insulin compared to the solution.  相似文献   

19.
制备了具有环氧丙基侧链的对位芳纶(PPTA-ECH)和间位芳纶(PMIA-ECH),并将其用做对位芳纶(PPTA)织物/环氧树脂复合材料中PPTA织物的涂覆剂。采用场发射扫描电子显微镜(FE-SEM)及XPS等方法对PPTA织物表面的PPTA-ECH涂层结构进行了表征。考察了PPTA-ECH和PMIA-ECH涂覆的PPTA织物/环氧树脂复合材料的层间剪切强度和面内剪切强度,并与未经涂覆的PPTA织物复合材料的性能作比较。结果表明,PPTA-ECH和PMIA-ECH可显著改善PPTA织物和环氧树脂之间的界面性能。涂覆了PPTA-ECH及PMIA-ECH的PPTA织物/环氧树脂复合材料的层间剪切强度(ILSS)比未经涂覆的复合材料分别提高了26.20%和14.76%,面内剪切强度(ISS)分别提高了26.98%和11.86%。由于PPTA-ECH对PPTA纤维具有更强的亲和能力,因此PPTA-ECH在层间剪切强度和面内剪切强度方面的增强效果均优于PMIA-ECH。对PPTA-ECH在PPTA纤维表面铺展与吸附及对复合材料的增强机理也进行了初步探讨。作为新型涂覆剂,PPTA-ECH在对位芳纶复合材料的开发应用方面具有潜在的应用前景。  相似文献   

20.
Peptide-coated surfaces are widely employed in biomaterial design, but quantifiable correlation between surface composition and biological response is challenging due to, for example, instrumental limitations, a lack of suitable model surfaces or limitations in quantitatively correlating data from different surface analytical techniques. Here, we first establish a reference material that allows control over amino acid content. Reversible addition-fragmentation chain-transfer (RAFT) polymerisation is used to prepare a copolymer containing alkyne and furan units with well-defined chain length and composition. Huisgen Cu(I)-catalysed azide-alkyne cycloaddition reaction is used to attach the model azido-polyethyleneglycol-amide-modified pentafluoro-l -phenylalanine to the polymer. Different compositional ratios of the polymer provide a surface with varying amino acid content that is analysed by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Nitrogen-related signals are compared with fluorine signals from both techniques. Fluorine and nitrogen signals from both techniques are found to be related to the copolymer compositions, but the homopolymer data deviate from this trend. The approach is then translated to a heparin-binding peptide that supports cell adhesion. Human embryonic stem cells cultured on copolymer surfaces presenting different amounts of heparin-binding peptide show strong cell growth while maintaining pluripotency after 72 h of culture. The early cell adhesion at 24 h can be correlated to the logarithm of the normalised CH4N+ ion intensity from ToF-SIMS data, which is established as a suitable and generalisable marker ion for amino acids and peptides. This work contributes to the ability to use ToF-SIMS in a more quantitative manner for the analysis of amino acid and peptide surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号