首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ag-doped polyaniline (PANI) nanoparticles are prepared via doping-dedoping-redoping with the thiol group in mercaptosuccinic acid (MSA) providing the linkage between PANI molecules and Ag atoms. Ag-MSA-doped PANI maintains the electrical conductivity well above the room-temperature value of 3.0 S/cm up to 220 °C, reaching its maximum (9.0 S/cm) at 180 °C. In addition, Ag-MSA-doped PANI nanoparticles show remarkable stability against repeated thermal aging at 120 °C. The room-temperature conductivity, in fact, increases by a factor of ∼3 after 3 cycles of thermal aging. The enhanced stability against repeated thermal aging is attributed to the formation of uniformly distributed Ag nanoparticles within the PANI particles upon heating.  相似文献   

2.
The thermal stability of chemically synthesized polyaniline (PANI) was examined, including granular (G) polyaniline powders formed conventionally in an HCl medium, and nanorod (NR) samples prepared using a falling-pH synthesis. The samples were examined before and after dedoping (dd) using thermogravimetric analysis (TGA), which showed small mass losses in the 200-300 °C temperature range, and greater mass losses due to oxidative degradation at higher temperatures. Furthermore, samples were treated thermally at 100, 125, 150, 175, 200, 250 and 300 °C for 30 min in air. SEM images did not show any pronounced effect on the morphologies of the samples from thermal treatment up to 300 °C. The ratios of the intensities (Q/B) of the predominantly quinonoid (Q) and benzenoid peaks (B) from FTIR spectroscopic analysis revealed that NR-PANI and NR-PANIdd underwent cross-linking upon thermal treatment up to 175 °C and were oxidized after treatment above 175 °C. G-PANI and G-PANIdd also underwent the same chemical changes with oxidation occurring above 200 °C. The free radical scavenging capacity of the samples was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, and was found to be independent of the spin concentrations of the samples. All samples exhibited a rapid decline in free radical scavenging capacity when exposed to temperatures above 200 °C, indicating that any polymer processing should be undertaken at temperatures less than this value to achieve high antioxidant activity.  相似文献   

3.
Polyaniline (PANI) base has been suspended in 9 M potassium hydroxide at 20 °C or 90 °C for various time intervals extending to 4 months. The fraction of acetone-soluble material increased from 1.2 wt.% to 4.5 wt.% after exposure to an alkaline medium for 60 days at 20 °C. Gel-permeation chromatography indicates that the aggregation of PANI is reduced, while the chain degradation itself is negligible. FTIR spectroscopy confirms this trend and the absence of hydrolytic changes in the PANI structure. Polyaniline retains the ability to be reprotonated with a 1 M sulfuric acid to a conducting form. No marked changes in the molecular structure have been found, even after suspension of PANI in 9 M KOH at 90 °C for 60 days.Similar immersion of PANI salt in 5 M sulfuric acid at 20 °C was responsible for changes in the protonation, and the mass increased by 11 wt.%. This was explained by the exchange of the original sulfate or chloride counter-ions for hydrogen sulfate anions or by the protonation of secondary amine sites in PANI in addition to imine ones. The changes in the molecular structure are discussed on the basis of FTIR spectra. The conductivity decreased from 1.2 S cm−1 to ∼10−3 S cm−1 but no time-dependence of conductivity was observed. There was no fraction of PANI soluble in acetone. PANI in the protonated state is thus stable also in the strongly acidic medium.The study is supplemented by the assessment of the thermal stability of PANI base, which is of importance for the processing of PANI. Loss of moisture has been observed after exposure to 250 °C for 10 h in both nitrogen atmosphere and in air. Good stability was found at 350 °C only in the nitrogen atmosphere, while a marked mass loss in weight was registered in air.  相似文献   

4.
Cellulose nanofibrils (CNF) were isolated from cotton microfibrils (CM) by acid hydrolysis and coated with polyaniline (PANI) by in situ polymerization of aniline onto CNF in the presence of hydrochloride acid and ammonium peroxydisulfate to produce CNF/PANI. Nanocomposites of natural rubber (NR) reinforced with CNF and CNF/PANI were obtained by casting/evaporation method. TG analyses showed that coating CNF with PANI resulted in a material with better thermal stability since PANI acted as a protective barrier against cellulose degradation. Nanocomposites and natural rubber showed the same thermal profiles to 200 °C, partly due to the relatively lower amount of CNF/PANI added as compared to conventional composites. On the other hand, mechanical properties of natural rubber were significantly improved with nanofibrils incorporation, i.e., Young’s modulus and tensile strength were higher for NR/CNF than NR/CNF/PANI nanocomposites. The electrical conductivity of natural rubber increased five orders of magnitude for NR with the addition of 10 mass% CNF/PANI. A partial PANI dedoping might be responsible for the low electrical conductivity of the nanocomposites.  相似文献   

5.
Conductivity stability at thermal environment of conductive polyaniline‐complexes/polyimide (PANI‐complexes/PI) blends, which were doped by camphorsulfonic acid (CSA) and dodecylbenzenesulfonic acid (DBSA), respectively, were investigated by conductivity measurements, electron spin resonance (ESR) spectra, differential and scanning thermometer (DSC). In the conversion process of PANI/Polyamic acid (PAA) to PANI/PI, the blend endeavored some kinds of alteration such as decomplexation of moisture and solvent, dissociation of dopant, crosslinking of PANI chain, and the imidization of PAA chain. PANI‐DBSA/PI showed higher thermal stability of conductivity than PANI‐CSA/PI, and both samples showed nearly linear decay of conductivity with increasing temperature showing greatly enhancement of conductivity stability. When they were exposed at near or over glass transition temperature, the conductivity decay became faster. The conductivity stability at base environment was also higher for PANI‐DBSA/PI due to difficulty in accessing of hydroxyl ion to PANI, which were resulted from dopant. DBSA‐doped blends showed increased polaron mobility and concentration at relatively high temperature, which led to extremely higher conductivity and its stability at high temperature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
Polyaniline (PANI) doped with different dopants (HCl, dodecyl benzene sulfonic acid, (+)‐Camphor‐10 sulfonic acid, dinonyl naphthalene disulfonic acid) was synthesized by chemical oxidation method. The FTIR studies indicated that the back bone structure of doped PANI was similar. Thermal stability was evaluated in nitrogen atmosphere by dynamic thermogravimetry and PANI‐HCl sample showed minimum weight loss below 400°C. The electrical conductivity of PANI was not affected by the structure of dopants. The microwave absorption studies of several polymers blends containing PANI‐HCl and/or carbon black were also carried out by using wave guide technique.  相似文献   

7.
The thermal behavior of PANI nanofibers doped with β-naphthalenesulfonic acid (β-NSA) was investigated and their morphological and structural changes after heating were monitored by SEM, XRD and Raman techniques, respectively. By using electron-scanning microscopy it is possible to verify that the nanofiber morphology is stable and no polymer degradation is observed in thermogravimetric (TG) data up to 200 °C. Nevertheless, the heating promotes the formation of cross-linking structures (phenazine and/or oxazine-like rings), that is clearly demonstrated by the presence of bands at ca. 578, 1398, and 1644 cm−1 in resonance Raman spectra of heated PANI-NSA samples. The most important consequence of the formation of cross-linking structures in PANI-NSA samples is that these samples retain their nanofiber morphology upon HCl doping in contrast to PANI-NSA nanofibers without heating.  相似文献   

8.
Prepolymers of polyarylacetylene (PAA) were synthesized from 1,4-diethynylbenzene using nickel catalyst (C20, C25, and C30) or by direct thermal polymerization (T48). Their curing behaviors were investigated in detail to determine the proper curing conditions that lead to high char yields in cured PAA resins. Dynamic and isothermal differential scanning calorimetry (DSC) measurements were employed to investigate the curing conditions of the prepolymers. Dynamic DSC study reveals that exothermic heat starts at about 120 °C, reaches to a maximum at 210 °C, and ends around 300 °C. Moreover, step isothermal DSC investigation (at 120, 160, 200, 250, and 300 °C; 1 h for each temperature) shows that the major curing occurs at 160 °C, 200 °C and 250 °C, with more than 85% of the acetylene groups reacted. Using this step-curing conditions, very high thermal resistance is realized on C30, with thermal decomposition temperature (at 10% weight loss) and char yield (at 800 °C) being 686 °C and 86%, respectively. Current results indicate that highly thermal resistant PAA resins are obtainable using step curing of PAA prepolymers synthesized by Ni-catalyzed reaction.  相似文献   

9.
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI–DBSA). PANI–DBSA, low‐density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin‐rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI–DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI–DBSA/LDPE, and this was attributed to the PANI–DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high‐resolution optical microscopy indicated that PANI–DBSA formed a conducting network at a high concentration of PANI–DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3750–3758, 2004  相似文献   

10.
Polyaniline (PANI) nanotubes were prepared by the oxidation of aniline in solutions of acetic or succinic acid, and subsequently carbonized in a nitrogen atmosphere during thermogravimetric analysis running up to 830 °C. The nanotubular morphology of PANI was preserved after carbonization. The molecular structure of the original PANI and of the carbonized products has been analyzed by FTIR and Raman spectroscopies. Carbonized PANI nanotubes contained about 8 wt.% of nitrogen. The molecular structure, thermal stability, and morphology of carbonized PANI nanotubes were compared with the properties of commercial multi-walled carbon nanotubes.  相似文献   

11.
We investigated thermal properties of proton exchange membranes (PEMs) prepared by the radiation-induced grafting of styrene into crosslinked-polytetrafluoroethylene films and the subsequent sulfonation for fuel-cell applications. A conventional thermogravimetric analysis was found to be unreliable because the resulting curve varied greatly with the heating rate. Thus, in order to obtain accurate information, we performed an ex-situ heat-treatment analysis, which involved heating of the PEMs at fixed temperatures of 200-350 °C and measurement of their remaining weight, ion exchange capacity (IEC) and proton conductivity (σ) after washing in pure water. The IEC and σ did not change at any temperature up to 200 °C, indicating high thermal stability. At 250 °C, however, the PEM properties deteriorated probably via radical cleavage of the C-S bond between a sulfonic acid group and an aromatic ring, and condensation of two sulfonic acid groups. Finally, the PEM was hot-pressed with two electrodes at 200 °C to produce a good membrane-electrode assembly for a fuel cell.  相似文献   

12.
New types of conducting composites using red mud as an inorganic substrate and polyaniline as the conducting phase were prepared. Red mud/polyaniline (RM/PANI) composites were synthesized in acidic aqueous solution by the chemical oxidative polymerization of aniline using ammonium peroxydisulfate as the oxidant. The composites exhibit conductivities in the 0.42-5.2 S cm−1 range, depending on the amount of polyaniline. They were characterized by infrared and UV-vis spectroscopy, scanning electron microscopy and X-ray diffraction. The IR and X-ray results show that PANI is deposited on the RM surface. The composites have a globular structure and the PANI globules synthesized on the surface of RM are smaller than those prepared under the same conditions without the substrate. Thermogravimetric analysis was used for investigation of the thermal stability of the composites. The thermal stability of the conductivity of RM/PANI composites was studied by ageing at 125 °C, the conductivity being measured in situ during this process.  相似文献   

13.
HCl doped polyaniline (PAni) was synthesized electrochemically and heat treated at 150 °C, 200 °C and 250 °C for 30 min in vacuum. Different intrinsic and extrinsic structural changes due to heat treatment were determined from XRD, TGA, FT-IR, conductivity and solubility measurement. When HCl doped PAni is subjected to heat treatment, different changes are taking place in the system like doping, dedoping (extrinsic), oxidation, chain scission, cross-linking and changes in crystal structure (intrinsic). Mechanism for doping, dedoping, oxidation, chain scission and cross-linking is proposed.  相似文献   

14.
Lightweight conductive polymers are considered for lightning strike mitigation in composites by synthesizing intrinsically conductive polymers (ICPs) and by the inclusion of conductive fillers in insulating matrices. Conductive films based on polyaniline (PANI) and graphene have been developed to improve through‐thickness conductivity of polymer composites. The result shows that the conductivity of PANI enhanced by blending polyvinylpyrrolidone (PVP) and PANI in 3:1 ratio. Conductive composite thin films are prepared by dispersing graphene in PANI. The conductivity of composite films was found to increase by 40× at 20 wt% of graphene inclusion compared with PVP and PANI blend. Fourier‐transform‐infrared (FTIR) spectra confirmed in situ polymerization of the polymer blend. The inclusion of graphene also exhibits an increase in Tg by 21°C. Graphene additions also showed an increase in thermal stability by approximately 148°C in the composite films. The mechanical result obtained from DMA shows that inclusion of graphene increases the tensile strength by 48% at 20 wt% of graphene reinforcement. A thin, highly conductive surface that is compatible with a composite resin system can enhance the surface conductivity of composites, improving its lightning strike mitigation capabilities.  相似文献   

15.
Oxidation of aniline by emulsion polymerization pathway using benzoyl peroxide oxidant in the presence of fluoroboric acid and sodium lauryl sulfate surfactant leads to incorporation of both acid group as well as surfactant group onto the polyaniline chain as dopants i.e. formation of polyaniline-fluoroboric acid-dodecylhydrogensulfate salt (PANI-HBF4-DHS). Amount of dopants such as fluoroboric acid (HBF4), dodecylhydrogensulfate (DHS) and water present in the PANI-HBF4-DHS was found out for the first time. Electrochemical activity and rheological stability of the polymer were determined. Thermal stability of PANI-HBF4-DHS was determined by subjecting the polyaniline salt in macroscale at four different temperatures (100, 150, 200 and 250 °C). Structure, composition and thermal stability of polyaniline salt were determined by chemical analysis, conductivity, IR, UV/vis, XRD spectral measurements from the heat treated samples. Polyaniline salt contains 8.3 wt% water, 22.4 wt% HBF4 and 15.4 wt% DHS at ambient temperature. Upon vacuum, polyaniline salt loses 4.7 wt% water and on heating the sample at 100 °C it loses the remaining 3.6 wt% water. On further heating polyaniline salt loses its dopants and at 250 °C it loses both the dopants almost completely. Polyaniline salt on heating undergoes cross-linking even at 100 °C and however, conductivity (3 × 10−2 S/cm) of polyaniline salt was found to remain almost the same up to 150 °C.  相似文献   

16.
Conductive composites consisted of epoxy resin and polyanilines (PANIs) doped with dodecylbenzenesulfonic acid ( 1 ), dodecylsulfonic acid (2), di(2‐ethylhexyl)sulfosuccinic acid (3), and HCl were synthesized by use of Ntert‐butyl‐5‐methylisoxazolium perchlorate (5) under various reaction conditions. It was found that the composites with PANI doped with acid 2 (PANI‐2) prepared by curing with 10 mol % of reagent 5 at 80 °C for 12 h showed high electroconductivity along with the low conducting percolation threshold (3 wt % of PANI‐2). Furthermore, the composite with even ?10 wt % of PANI‐2 exhibited ?10?1 S/cm of electroconductivity. The UV–vis and IR measurements indicated that the conductive emeraldine salt form of PANI‐2 in the composite was maintained after the curing reaction. The thermal stability was studied by TGA and DSC measurements, and then, the Td10 and Tg of the composite with 5 and 10 wt % of PANI‐2 were found to be similar to those with the cured epoxy resin itself. In addition, the similar investigation with an oxetane resin instead of the epoxy resin was also carried out. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 718–726, 2006  相似文献   

17.
Polyaniline (PANI) samples were prepared by the oxidation of aniline with ammonium peroxodisulfate in a reaction vessel placed in a bath thermostated to particular temperature, Tb, from −20 °C to 40 °C. Temperature–time profiles of reaction mixtures were monitored except for the reaction at −20 °C that proceeded in the solid state. The temperature regime was found to influence the molecular structure, morphology, crystallinity and electrical conductivity of PANI. The increase in Tb results in an increased content of meanwhile unspecified structure defects in the formed PANI chains (the presence of attached self-doping groups is improbable), decreased crystallinity, toughness and compactness of PANI microparticles and increased steepness of the temperature dependence of PANI conductivity. The PANI prepared in the solid-state polymerization at −20 °C shows, besides a rather high crystallinity, the unusually high position of the quinonoid band maximum: 643 nm, which suggests a high regularity of its chains. A correlation between the temperature dependence of PANI conductivity at low temperatures (range from 13 to 318 K) on one hand and the temperature regime of PANI preparation on the other hand, is reported for the first time. The dependences obtained only poorly meet the variable random hopping model.  相似文献   

18.
Polyaniline–dodecylbenzene sulfonic acid (PAn–DBSA) complex was thermally treated and its conductivity and structure change were investigated. The conductivity increased linearly from 1.1 × 10−4 to 3.0 × 10−1 S/cm on thermal heating until 140°C, but decayed above 200°C. The increase was caused by an additional thermal doping resulting from an increasing mobility of undoped dopants. After the thermal doping, the formation of the layered structure of PAn–DBSA is made. The decrease was caused by the thermal decomposition of dopants. The conductivity changes at a high temperature was strongly dependent on the nature of the dopant. The results were confirmed by means of X-ray patterns and Fourier transform infrared spectra obtained in the heating and cooling processes of polyaniline.  相似文献   

19.
A hybrid approach has been adopted by using a combination of colloidal graphite (CG) as a conducting filler, 5‐lithium sulfoisophthalic (LiSIPA) acid as a dopant, and polyaniline (PANI) as a matrix to prepare LiSIPA doped PANI–CG composites. The thermal stability (~300°C) and electrical conductivity (67.4 S/cm at 17.4% CG content) have been improved significantly as compared to PANI doped with conventional inorganic dopants like HCl or H2SO4 (130–150°C). The maximum shielding effectiveness value was found to be ?39.7 dB. X‐ray diffraction and infrared spectroscopy showed a systematic shifting of the characteristic peaks and bands with increase in the amount of CG, which indicates significant interaction exists between CG and PANI. The UV–Vis spectra showed the characteristic bands of PANI, with a shift to shorter wavelength with increase in the CG content. The interaction mechanism between doped PANI and CG in the resultant composites has been proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Miscanthus x giganteus was treated with formic acid/acetic acid/water (30/50/20 v/v) for 3 h at 107 °C and 80 °C, and soaking in aqueous ammonia (25% w/w) for 6 h at 60 °C. The effects of these fractionation processes on chemical structure, physico-chemical properties and antioxidant activity of extracted lignins were investigated. Lignins were characterized by their purity, carbohydrate composition, thermal stability, molecular weight and by Fourier transform infrared (FTIR), 1H and quantitative 13C nuclear magnetic resonance (NMR), adiabatic broadband {13C-1H} 2D heteronuclear (multiplicity edited) single quantum coherence (g-HSQCAD). The radical scavenging activity towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) was also investigated. Formic/acetic acid pretreatment performed in milder conditions (80 °C for 3 h) gave a delignification percentage of 44.7% and soaking in aqueous ammonia 36.3%.Formic/acetic acid pretreatment performed in harsh conditions (107 °C for 3 h) was more effective for extensive delignification (86.5%) and delivered the most pure lignin (80%). The three lignin fractions contained carbohydrate in different extent: 3% for the lignin obtained after the formic/acetic acid pretreatment performed at 107 °C (FAL-107), 5.8% for the formic/acetic acid performed at 80 °C (FAL-80) and 13.7% for the ammonia lignin (AL). The acid pretreatment in harsh conditions (FAL-107) resulted in cleavage of β-O-4′ bonds and aromatic C-C. Repolymerisation was thought to originate from formation of new aromatic C-O linkages. Under milder conditions (FAL-80) less β-O-4′ linkages were broken and repolymerisation took place to a lesser extent. Ammonia lignin was not degraded to a significant extent and resulted in the highest weight average 3140 g mol−1. Despite the fact of FAL-107 repolymerisation, significant phenolic hydroxyls remained free, explaining the greater antioxidant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号