首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synergistic effect between spent oil-cracking catalyst (FCC catalyst) and an ammonium polyphosphate/pentaerythritol intumescent mixture was evaluated for various polyethylenic matrices. The mixtures were rated according to the UL-94 standard and evaluated by limiting oxygen index (LOI) testing, Thermogravimetric analysis and cone calorimetry. LOI results demonstrated a synergistic effect of the catalyst with the intumescent formulation in polyethylene, poly(ethylene-co-butyl acrylate), poly(ethylene-co-ethyl acrylate), poly(ethylene-co-methyl acrylate) and poly(ethylene-co-butyl acrylate-co-maleic anhydride). This synergistic effect also led to lower rates of heat release, total heats evolved and fume emissions, as observed by cone calorimetry. The nature of the polymeric matrix appears to influence the extent of the synergistic effect and, among the comonomers studied, butyl acrylate seems to benefit the most from catalyst addition in terms of fire-retarding properties. Apparently, the amount of comonomer affects the LOI results, although its influence as measured by other tests is not clear.  相似文献   

2.
A series of intumescent flame-retardant epoxy resins (IFR-EPs) were prepared only by adding a 5 wt% total loading of ammonium polyphosphate (APP) and metal compounds. All the samples could achieve V-0 rating and did not generate dripping during UL-94 testing. The limiting oxygen index (LOI) values of the samples with 4.83 wt% APP and 0.17 wt% CoSA increase from 27.1 to 29.4, compared with epoxy resin containing 5 wt% APP. The samples also showed excellent water resistance of flame retardancy in 30 °C and 70 °C water for 168 h. The LOI results show that the composition of metal compounds (metal ions and ligands/anions) and the mass ratios of APP to metal compounds affect the flame retardancy of the samples. TG results indicate that the catalytic effect of CoSA on the decomposition of both APP and the epoxy resins containing APP is better than that of CuSAO. The fire behavior of epoxy resin and epoxy resins containing APP with/without CoSA were investigated by cone calorimeter. Cone calorimeter parameters of the samples such as HRR, THR, TSP and COP indicate that the addition of APP and CoSA improves the fire safety of epoxy resin significantly, and CoSA shows an obvious catalytic effect.  相似文献   

3.
Ethylene vinyl acetate copolymer (EVA) flame retarded by ammonium polyphosphate (APP) and pentaerythritol (PER) was cross-linked by electron beam irradiation. The effects of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of EVA composites were investigated. The volatilized products of EVA/APP/PER composites were characterized by thermogravimetric analysis/infrared spectrometry. As VA content increased, the volatilized products increased in the second decomposition step, but decreased in the third decomposition step. For all samples, the increase of irradiation dose could improve both the gel content and the Limit Oxygen Index (LOI, the minimum oxygen concentration by volume for maintaining the burning of a material) values of irradiated composites. The mechanical and thermal properties of the irradiated EVA composites were also evidently improved at appropriate irradiation dose as compared with those of unirradiated EVA composites, whereas these properties decrease at higher irradiation dose because of the electron beam irradiation-induced oxidative degradation or chain scission.  相似文献   

4.
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA.  相似文献   

5.
Intumescent flame retardant (IFR) has received the considerable attention ascribed to the inherent advantages including non‐halogen, low toxicity, low smoke release and environmentally friendly. In this work, a novel charring agent poly (piperazine phenylaminophosphamide) named as PPTA was successfully synthesized and characterized by Fourier transform infrared spectra (FTIR) and X‐ray photoelectron spectroscopy (XPS). Then, a series of flame‐retardant EP samples were prepared by blending with ammonium polyphosphate (APP) and PPTA. Combustion tests include oxygen Index (LOI), vertical Burning Test (UL‐94) and cone calorimeter testing,these test results showed that PPTA greatly enhances the flame retardancy of EP/APP. According to detailed results, EP containing 10 wt% APP had a LOI value of 30.2%,but had no enhancement on UL‐94 rating. However, after both 7.5 wt% APP and 2.5 wt% PPTA were added, EP‐7 passed UL‐94 V‐0 rating with a LOI value of 33.0%. Moreover, the peak heat release rate (PHRR) and peak of smoke product rate (PSPR) of EP‐7 were greatly decreased. Meanwhile, the flame‐retardant mechanism of EP‐7 was investigated by scanning electron microscopy (SEM), thermogravimetric analysis/infrared spectrometry (TG‐IR) and X‐ray photoelectron spectroscopy (XPS). The corresponding results presented PPTA significantly increased the density of char layer, resulting in the good flame retardancy.  相似文献   

6.
Novel polyurethane zinc borate composites were prepared with the main aim to increase the flame retardancy of the polyurethane. It was discovered that the zinc borate had very significant effects on the oxidative stability of the neat polymer which was first observed by oxygen induction time tests and supported with actual weathering chamber tests. The oxidative stability of zinc borate-filled polyurethane was compared with the polyurethane stabilized with a commercial light stabilizer, Tinuvin B75 from Ciba SC. The performance of zinc borate-filled polyurethane was much better, as shown by oxygen induction time and weathering chamber tests. Additionally the flame retardancy was measured and significant flame retardancy was achieved. Mechanical tests, thermogravimetric analysis and scanning electron microscope studies were performed to characterize the products.  相似文献   

7.
An efficient flame retardant polymeric synergist poly[N4-bis(ethylenediamino)-phenyl phosphonic-N2, N6-bis(ethylenediamino)-1,3,5-triazine-N-phenyl phosphonate] (PTPA) was designed and synthesized from cyanuric chloride, ethylenediamine and phenylphosphonic dichloride. It was characterized by Fourier Transform Infrared (FTIR), 1H NMR and 31P NMR, Elemental Analysis (EA) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Combined with ammonium polyphosphate (APP), a new intumescent flame retardant (IFR) was obtained. The flammability behaviors of polypropylene (PP)/IFR system were investigated by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimetry. With 25 wt% of IFR (APP:PTPA = 2:1), the PP/IFR system could achieve a LOI value of 34.0% and UL-94 V-0 rating, and the heat release rate (HRR), peak heat release rate (PHRR), total heat release (THR) and smoke production rate (SPR) were considerably reduced, especially HRR and SPR were decreased by 85% and 79%, respectively. The results indicate that there is an excellent synergism between APP and PTPA, which endows PP with both good flame retardancy and good smoke suppression. Furthermore, the thermal degradation mechanism of IFR and the flame-retardant mechanism of PP/IFR system were investigated by thermogravimetric analysis (TGA), FT-IR, TG-FTIR and scanning electron microscope (SEM). The study on the flame-retardant mechanism of IFR indicated that a structure containing –CN was formed due to the reaction between APP and PTPA.  相似文献   

8.
The relation between the thermal decomposition and flammability of polynorbornene (PNB) synthesized by addition polymerization was analyzed. In a small-sized vertical combustion test, the PNB did not combust or drip, and the first ignition was extinguished in the combustion test with a cone calorimeter. The decomposition products of PNB were of some low molecular weight compounds with random scissions on the norbornene structure, and alkene (with 12 carbons in the PNB used in this study) was selectively generated by retro-Diels-Alder reaction. When the zeolite was added, the decomposition was accelerated and low molecular weight products increased, especially H2O. These results suggested that the flammability of the thermal decomposition gas was caused by the zeolite, which changed the composition of decomposition products. The lower flammability limits calculated in Le Chatelier's equation were increased from 0.9 to 1.3 by the zeolite. The flame retardancy of PNB was observed because the amount of H2O as an inert gas and the lower flammability limit was increased.  相似文献   

9.
Graphene oxide was prepared by ultrasonication of completely oxidized graphite and used to improve the flame retardancy of epoxy.The epoxy/graphene oxide nanocomposite was studied in terms of exfoliation/dispersion,thermal stability and flame retardancy.X-ray diffraction and transmission electron microscopy confirmed the exfoliation of the graphene oxide nanosheets in epoxy matrix.Cone calorimeter measurements showed that the time to ignition of the epoxy/graphene oxide nanocomposite was longer than that of neat epoxy.The heat release rate curve of the nanocomposite was broadened compared to that of neat epoxy and the peak heat release rate decreased as well.  相似文献   

10.
The combination of synergistic agent with intumescent flame retardant (IFR) systems provides a promising way to prepare high performance IFR composites. In this study, the effects of the synthetic zeolite 4 A in combination with the IFR system consisting of ammonium polyphosphate (APP) and tris (2-hydroxyethyl) isocynurate (THEIC) on thermal degradation, mechanical properties, flame retardancy and char formation of high-density polyethylene composites were investigated by limiting oxygen index (LOI) measurement, cone calorimetry, scanning electron microscopy and laser Raman spectroscopy. The LOI value of HD/FR/Z-0.5 composite with an optimum content of 0.5 wt. % zeolite 4 A and 25 wt. % of total flame retardant reaches 26.3 %. A low loading of zeolite 4 A can improve the bench-scale combustion performance as determined by cone calorimetry, and promote the formation of more compact char residue with a highly graphitic structure. However, a low loading of zeolite in combination with the IFR system consisting of APP and THEIC produces no significant changes in mechanical performance.  相似文献   

11.
A series of flame retarded epoxy resins (EP) was prepared with a novel polyhedral oligomeric silsesquioxane containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-POSS). The flame retardancy of these EPs was tested by the LOI, UL-94, which indicates that DOPO-POSS has meaningful effects on the flame retardancy of EP composites. 2.5 wt.% DOPO-POSS incorporation into epoxy resin (EP-2.5), results in a LOI value 30.2 and UL-94 V-1 (t1 = 8 s and t2 = 3 s) rating. Moreover, self-extinguishing effect through the pyrolytic gases spurt is observed in UL-94 test for the EP-2.5. The pyrolytic gases and thermal stability of epoxy resins with and without DOPO-POSS were detected by TGA-FTIR under air atmosphere. Releases of gaseous species are found to be similar for the pure EP and EP-2.5. The details of fire behaviour, such as TTI, HRR, p-HRR, TSR, SEA, COPR, CO2PR, and TML, were tested by cone calorimeter. It is notable that 2.5 wt.% DOPO-POSS could make COPR and CO2PR reach a maximum, which could explain the blowing-out extinguishing effect.  相似文献   

12.
Improving the flame retardancy of PET fabric by photo-induced grafting   总被引:1,自引:0,他引:1  
Photo-induced surface grafting with glycidyl methacrylate (GMA) as monomer in association with a pad-curing treatment by using a flame retardant (FR) solution which contains 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP) and sulfamic acid (H2NSO3H) has been used to improve the fire performance of PET fabric in this study. The effects of initiator concentration, monomer concentration and the irradiation time on the grafting percentage were investigated. The chemical structure of grafted surface of the PET fabric was characterized by an attenuated total reflection-infrared (ATR-IR) spectroscopy. The fire performance was evaluated by the LOI and the vertical flammability tests, and the results indicate that the photo grafting treatment could improve the flame retardancy and dripping resistance of PET fabric. Thermal behaviour of treated PET fabric samples was investigated by thermogravimetric (TG) and differential scanning calorimetric (DSC). The morphology of the sample char residue was also investigated by scanning electron microscope (SEM).  相似文献   

13.
A hybrid nanopaper consisting of carbon nanofibre (CNF) and/or clay, polyhedral oligomeric silsesquioxane (POSS), ammonium polyphosphate (APP), has been fabricated through the papermaking process. The as-prepared hybrid nanopaper was then incorporated onto the surface of glass fibre (GF) reinforced polymer matrix composites through injection moulding. The morphologies of hybrid nanopapers with and without the polymer resin were characterized with scanning electron microscopy (SEM). The polymer resin penetrated the entire nanopaper under a high-pressure compressed air system. The thermal decomposition behaviour of hybrid nanopapers infused with resin was studied with real-time thermogravimetric analysis/Fourier transform infrared spectrometry (TGA/FTIR). The test results indicate that the addition of clay in the hybrid paper increased the char residues of the nanocomposites. The fire retardant performance of composite laminates incorporating hybrid nanopaper was evaluated by cone calorimeter testing using a radiant heat flux of 50 kW/m2. The cone test results indicated that the peak heat release rate (PHRR) decreased dramatically in the case of laminate composites incorporating CNF/clay/APP hybrid paper. However, the extent of reduction of PHRR of the composite laminates incorporated with CNF/POSS/APP hybrid paper was lower. The formation of compact char materials was observed on the surface of the residues and analyzed by SEM and X-ray photoelectron spectroscopy (XPS). The flame retardant mechanisms of hybrid nanopapers in composite laminates are discussed.  相似文献   

14.
Hexakis(4-hydroxyphenoxy)-cyclotriphosphazene (PN-OH) was synthesized through nucleophilic substitution of the chloride atoms of hexachlorocyclotriphosphazene and reduction of the aldehyde groups, and its chemical structure was characterized by elemental analysis, 1H and 31P NMR, and Fourier transform infrared (FTIR) spectroscopy. A new phosphazene-based epoxy resin (PN-EP) was successfully synthesized through the reaction between diglycidyl ether of bisphenol-A (DGEBA) and PN-OH, and its chemical structure was confirmed by FTIR and gel permeation chromatography. Four PN-EP thermosets were obtained by curing with 4,4′-diaminodiphenylmethane (DDM), dicyandiamide (DICY), novolak and pyromellitic dianhydride (PMDA). The reactivity of PN-EP with the four curing agents presents an increase in the order of DDM, PMDA, novolak and DICY. An investigation on their thermal properties shows that the PN-EP thermosets achieve higher glass-transition and decomposition temperatures in comparison with the corresponding DGEBA ones while their char yields increase significantly. The PN-EP thermosets also exhibit excellent flame retardancy. The thermosets with novolak, DICY and PMDA achieve the LOI values above 30 and flammability rating of UL94 V-0, whereas the one with DDM reaches the V-1 rating. The nonflammable halogen-free epoxy resin synthesized in this study has potential applications in electric and electronic fields in consideration of the environment and human health.  相似文献   

15.
Polypropylene (PP) is melt-compounded in a twin-screw extruder with surface-modified decabromodiphenyl ethane/antimony trioxide (DBDPE/Sb2O3) and organically modified montmorillonite (OMMT). The intercalation and dispersion microstructure of OMMT in the nanocomposites are investigated by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Thermal stability and char residue are characterized by thermogravimetric and differential thermal analysis (TGA–DTA). Flame retardant properties are evaluated by limited oxygen index (LOI) and UL-94 vertical burning test.The results indicate that better flame retardancy can be achieved for the composite containing a modified mixture DBDPE/Sb2O3. The presence of DBDPE/Sb2O3 could improve the dispersion of OMMT in polypropylene, leading to higher thermal stability and more char residue. A synergistic effect between OMMT and DBDPE/Sb2O3 has been observed and discussed.  相似文献   

16.
Flame retardant mixtures of carbon nanotubes (CNTs) and intumescent flame retardant (IFR) were embedded in polypropylene (PP) to investigate what will happen if the additives exhibit two different flame retardation mechanisms. TEM tests showed that CNTs dispersed homogenously in PP matrix without any visible agglomeration. The effects of CNTs on thermal stability and flammability of PP were investigated by thermogravimetry (TG) and cone calorimetry tests, respectively. Results indicated that the introduction of CNTs only enhanced thermal stability of materials in a certain temperature range, but caused a severe deterioration of flame retardancy due to the interaction of the network structure and the intumescent carbonaceous char. Furthermore, conditions for an intumescent flame retardation system to behave with high efficiency were also discussed by a secondary combustion test.  相似文献   

17.
A novel cyanate resin was prepared by the reaction of 10-(2,5-Dihydroxyphenyl)-10-H-9-oxa-10-phospha-phenantbrene-10-oxide (DOPO-HQ) and 2, 2-Bis (4-cyanatophenyl) propane (BACY) when trace of cobalt(III) acetylacetonate(CoAt(III)) was added, The curing behavior during the reaction of DOPO-HQ/BACY/CoAt(III) system was analyzed by gelation time (GT), differential scanning calorimetry (DSC) and Fourier transformation infrared spectrometry (FTIR), respectively. Compared with the BACY/CoAt(III) system (GT = 1239?s, Tp (exothermic peak temperature) = 215?°C), the GT of DOPO-HQ/BACY/CoAt(III) system is 110?s at 180?°C, and the Tp is 154?°C when containing 10?wt % DOPO-HQ. The limit oxygen index (LOI) and vertical burning test (UL-94) demonstrate that the flame retardancy of BACY resin is improved by DOPO-HQ. Specifically, the DOPO-HQ/BACY resin prepared by a mass ratio of DOPO-HQ: BACY = 10:90 has a LOI value of 33.1% and a UL-94 of V-0 rating, while the LOI value of BACY resin is 28.5% and UL-94 is no rating. In addition, the DOPO-HQ/BACY resin containing 10?wt % DOPO-HQ has excellent dielectric properties, the dielectric constant (Dk) is 2.69 and dielectric loss (Df) is 0.007. The as-synthesized DOPO-HQ/BACY resin shows promising application prospect as electronic packaging materials.  相似文献   

18.
Water blown rigid polyurethane foam (PUF) was prepared with melamine polyphosphate (MPP) and melamine cyanurate (MC) as fire retardant (FR) additives. The effect of these additives on the properties of rigid PUF such as physico-mechanical, morphological, thermo-oxidative stability, flame retardancy and smoke density properties were studied. The mechanical and thermo-oxidative stability of PUF filled with MC was found to be better than those of MPP filled PUF. The insulation property of both MPP and MC filled PUF was improved with respect to the neat PUF. The FR properties of these filled PUF were evaluated by cone calorimeter, limiting oxygen index (LOI), smoke density, rate of burning and char residue estimation. The FR property of MPP filled PUF was better than that of the MC filled PUF.  相似文献   

19.
This work aims to evaluate the efficiency of halloysite as synergistic agent in an intumescent PP system based on a coated ammonium polyphosphate (IFR). The first part of the study analyses the thermal stability and fire performance of PP when using the intumescent formulation alone or in combination with the aluminosilicate nanotubes (HNTs). Cone calorimetry reveals that partial substitution of IFR by HNTs (3 wt.%) imparts substantial improvement in flame retardancy with reduced heat release rate and longer burning times. Additionally, a shift from V-1 to V-0 classification is achieved at the UL-94 test with only 1.5 wt.% HNTs. The second part provides a better understanding of the physical and chemical mechanisms of action of HNTs in the intumescent systems. The chemical evolution of the condensed phase during combustion is described by solid state NMR, and in particular using 2D NMR. Results indicate that halloysite speeds up the development of the intumescent shield, but also enhances its mechanical properties by physical reinforcement (i.e. aluminosilicate “skeleton-frame” for the phospho-carbonaceous structure) and/or by chemical interactions with IFR yielding to aluminophosphates. These new chemical species allow thermal stabilization of the char at high temperatures and provide good macro- and micro-structural properties. Both effects increase the mechanical strength of the protective layer during burning ensuring excellent heat and mass transfer limitations between gas and condensed phases.  相似文献   

20.
Nano-Mg(OH)2 (nanometre magnesium hydroxide, nano-MH) was successfully introduced into the esterification and polycondensation system by in situ polymerization to obtain PET/magnesium salt composites (PETMS). The thermal properties and flame retardancy of PETMS were investigated by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), UL-94 vertical burning and limited oxygen index (LOI) test. The DSC and TGA results show that magnesium salts in the PET matrix have little effect on the thermal properties of PET, but a significant effect on the thermal stabilities of the composites. The results of LOI and UL-94 test show PETMS have higher LOI values (≥25%) and V-0 rating without melt dripping in the UL-94 test, indicating that PETMS have good flame retardancy and anti-dripping property. Moreover, the residues of magnesium salts and composites after TGA test were also studied by Fourier transform infrared spectroscopy (FTIR) to better understand the mechanism of flame retardancy, which reveals that magnesium salts accelerate the degradation of PET and catalyze the formation of char. The SEM results show the morphological structures of the char effectively protect the composites’ internal structures and inhibit the heat, smoke transmission and reduce the fuel gases when the fire contacts them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号