首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable poly(butylene succinate) (PBSU)/carboxyl‐functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposites were prepared via solution casting method at low f‐MWNTs loadings of 0.5 and 1 wt%, respectively, in this work. Scanning and transmission electron microscopic observations reveal a fine dispersion of f‐MWNTs throughout the PBSU matrix. Non‐isothermal melt crystallization at different cooling rates, isothermal melt crystallization at different crystallization temperatures, spherulitic morphology, and crystal structure of neat PBSU and its nanocomposites were investigated with various techniques in detail. The addition of f‐MWNTs is found to enhance the crystallization of PBSU, apparently in the nanocomposites during both nonisothermal and isothermal melt crystallization, due to the heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBSU remain almost unchanged. Effect of the presence of f‐MWNTs and their loadings on the thermodynamic driving force for nucleation and nucleation activity of PBSU was evaluated quantitatively through two methods. Moreover, it is found that incorporating with 1 wt% f‐MWNTs significantly improves the storage modulus of PBSU in the nanocomposites by about 147% at room temperature as compared with that of neat PBSU. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Biodegradable poly(3‐hydroxybutyrate) (PHB)/functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposite was prepared in this work by solution casting method at 2 wt% f‐MWNTs loading. Scanning electron microscopy and transmission electron microscopy observations indicate a homogeneous distribution of f‐MWNTs in the PHB matrix. Nonisothermal melt crystallization, overall isothermal melt crystallization kinetics, and crystalline morphology of neat PHB and the PHB/f‐MWNTs nanocomposite were studied in detail. It is found that the presence of f‐MWNTs enhances the crystallization of PHB during nonisothermal and isothermal melt crystallization processes in the nanocomposite due to the heterogeneous nucleation effect of f‐MWNTs. Moreover, the incorporation of a small quantity of f‐MWNTs apparently improves the thermal stability of the PHB/f‐MWNTs nanocomposite with respect to neat PHB. Two methods are employed to study the activation energies of thermal degradation for both the neat PHB and the PHB/f‐MWNTs nanocomposite. The activation energy of thermal degradation of the PHB/f‐MWNTs nanocomposite is higher than that of neat PHB. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Biodegradable poly(butylene succinate)/carbon black (PBS/CB) nanocomposite was prepared by melt compounding and the amount of CB loading was 3 wt %. The PBS/CB nanocomposite exhibited not only a good dispersion of aggregates of CB in the PBS matrix, but also an improvement in mechanical and electrical properties as well. The nonisothermal crystallization behavior and crystal structure of neat PBS and its nanocomposite were also studied by differential scanning calorimetry and wide angle X-ray diffraction in detail. The crystal morphology is observed by polarized optical microscopy. The Avrami equation and the Mo equation were employed to describe the nonisothermal crystallization kinetics. The Mo equation was found to be more suitable to predict the whole nonisothermal crystallization process for both neat PBS and its nanocomposite. It was concluded that the addition of CB retarded the crystallization rate compared with that of neat PBS at the same cooling rate, which can be attributed to restricting effect of CB on the segmental motions of the polymer chains. Moreover, the incorporation of the CB particles does not modify the crystal structure of PBS.  相似文献   

4.
Poly(l-lactide) (PLLA) and functionalized multi-walled carbon nanotubes (f-MWNTs) were used to prepare PLLA/f-MWNTs composites via solution blending. The structure and morphology of f-MWNTs were characterized using FT-IR and SEM. The spherulitic morphologies, isothermal crystallization kinetics, and melting behavior of the resulting PLLA/f-MWNTs composites were investigated by POM and DSC, respectively. Both Avrami and Lauritzen–Hoffman kinetics models are used to quantitatively evaluate the crystallization half-time t 1/2, the nucleation constant K g, and the work of chain folding q of PLLA and its composites. Temperature modulated DSC was used to investigate the mechanism of overlapped endothermic and exothermic peaks of PLLA/f-MWNTs composites. The results indicated that the SiO2 coating on the MWNTs could react with coupling agent KH-550 leading to the formation of f-MWNTs, which can be evenly dispersed in PLLA matrix. A decrease of spherulite size and an increase of crystallization rate were observed from POM measurements for PLLA/f-MWNTs. The multiple melting behavior can be attributed to the melt-recrystallization process of PLLA/f-MWNTs composites at certain temperature.  相似文献   

5.
The effect of organo‐modified clay (Cloisite 93A) on the crystal structure and isothermal crystallization behavior of isotactic polypropylene (iPP) in iPP/clay nanocomposites prepared by latex technology was investigated by wide angle X‐ray diffraction, differential scanning calorimetry and polarized optical microscopy. The X‐ray diffraction results indicated that the higher clay loading promotes the formation of the β‐phase crystallites, as evidenced by the appearance of a new peak corresponding to the (300) reflection of β‐iPP. Analysis of the isothermal crystallization showed that the PP nanocomposite (1% C93A) exhibited higher crystallization rates than the neat PP. The unfilled iPP matrix and nanocomposites clearly shows double melting behavior; the shape of the melting transition progressively changes toward single melting with increasing crystallization temperature. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the PP latex (PPL). It should be reasonable to treat C93A as a good nucleating agent for the crystallization of PPL, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites. The activation energy, ΔEa, decreased with the incorporation of clay nanoparticles into the matrix, which in turn indicates that the nucleation process is facilitated by the presence of clay. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1927–1938, 2010  相似文献   

6.
The effect of tetramethylenedicarboxylic dibenzoylhydrazide (designated here as TMC) on the nonisothermal and isothermal crystallization behavior of PLA was investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD). TMC shows excellent nucleating effect on PLA. With the addition of 0.05 wt% TMC, the crystallization half-time of PLA decreases from 26.06 to 6.13 min at 130 °C. The isothermal crystallization data were further analyzed by the Avrami model. The values of the Avrami exponent of the blends are comparable to that of neat PLA, indicating that the presence of TMC does not change the crystallization mechanism of the matrix. The observation from POM and WAXD measurements showed that the presence of TMC increases significantly the nuclei density of PLA but has no discernible effect on its crystalline structure.  相似文献   

7.
Poly(butylene terephthalate) (PBT)/organo‐attapulgite (ATT) nanocomposites containing 2.5 and 5 wt % nanoparticles loadings were fabricated via a simple melt‐compounding approach. The crystal structure and isothermal crystallization behaviors of PBT composites were studied by wide‐angle X‐ray diffraction and differential scanning calorimetry, respectively. The X‐ray diffraction results indicated that the addition of ATT did not alter the crystal structure of PBT and the crystallites in all the samples were triclinic α‐crystals. During the isothermal crystallization, the PBT nanocomposites exhibited higher crystallization rates than the neat PBT and the varied Avrami exponents when compared with the neat PBT. At the same time, the regime II/III transition was also observed in all the samples on the basis of Hoffman‐Laurizten theory, but the transition temperature increased with increasing ATT loadings. The fold surface free energy (σe) of polymer chains in the nanocomposites was lower than that in the neat PBT. It should be reasonable to treat ATT as a good nucleating agent for the crystallization of PBT, which plays a determinant effect on the reduction in σe during the isothermal crystallization of the nanocomposites, even if the existence of ATT could restrict the segmental motion of PBT. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2112–2121, 2006  相似文献   

8.
The effect of the addition of two combined fillers, smectite clay and diamond and smectite clay and carbon nanoparticles, on structure, morphology, isothermal and non isothermal crystallization behaviour, tensile and thermal properties of isotactic polypropylene (iPP) has been investigated by using several techniques: wide angle X-ray diffraction, optical and scanning electron microscopy, thermogravimetry, differential scanning calorimetry and tensile techniques. It was found that nanoparticles of diamond and carbon favour the nucleation of the β-form of iPP crystal, whereas the clay nanolayers do not have any influence on the crystal structure of iPP. The thermal stability of iPP/(clay+diamond) and iPP/(clay+carbon) is improved with respect to neat iPP, whereas no influence is detected when only clay is added to iPP. At the given crystallization conditions, the overall crystallization peak of iPP/(clay+diamond) almost exactly overlaps the crystallization peak of neat iPP, whereas in the case of iPP/clay and iPP/(clay+carbon) the maximum of the crystallization peaks is shifted to higher temperature. The spherulite growth rate, G values do not differ from one another. The iPP/(clay+carbon) system shows ductile behavior. The other systems show brittle behavior with failure before necking. These results were related with the very high percentage of beta phase present in the samples of iPP/(clay+carbon).  相似文献   

9.
邱兆斌 《高分子科学》2014,32(9):1139-1148
Poly(vinylidene fluoride) (PVDF) and poly(butylene succinate-co-24 mol% hexamethylene succinate) (PBHS), both crystalline polymers, formed melt-miscible crystalline/crystalline polymer blends. Both the characteristic diffraction peaks and nonisothermal melt crystallization peak of each component were found in the blends, indicating that PVDF and PBHS crystallized separately. The crystalline morphology and crystallization kinetics of each component were studied under different crystallization conditions for the PVDF/PBHS blends. Both the spherulitic growth rates and overall isothermal melt crystallization rates of blended PVDF decreased with increasing the PBHS composition and were lower than those of neat PVDF, when the crystallization temperature was above the melting point of PBHS component. The crystallization mechanism of neat and blended PVDF remained unchanged, despite changes of blend composition and crystallization temperature. The crystallization kinetics and crystalline morphology of neat and blended PBHS were further studied, when the crystallization temperature was below the melting point of PBHS component. Relative to neat PBHS, the overall crystallization rates of the blended PBHS first increased and then decreased with increasing the PVDF content in the blends, indicating that the preexisting PVDF crystals may show different effects on the nucleation and crystal growth of PBHS component in the crystalline/crystalline polymer blends.  相似文献   

10.
This paper focuses on the thermal degradation behavior of multi-walled carbon nanotubes (MWNTs)/polyamide 6 (PA6) composites under air and nitrogen atmosphere using thermogravimetric analysis (TGA). The results show that the dispersion of amino-functionalized MWNTs (f-MWNTs) in PA6 is more homogeneous than purified MWNTs (p-MWNTs). The presence of MWNTs improves the thermal stability of PA6 under air obviously, but has little effect on the thermal degradation behavior of PA6 under nitrogen atmosphere. The activation energies for degradation under air, Ea, estimated by Kissinger method, are 153, 165 and 169 kJ/mol for neat PA6, p-MWNTs/PA6 and f-MWNTs/PA6 composites, respectively. The p-MWNTs/PA6 composites show two-step degradation not only under air but also under nitrogen atmosphere, however, neat PA6 and the f-MWNTs/PA6 composites exhibit two-step degradation only under air.  相似文献   

11.
An exfoliated nanocomposite was prepared by the film‐casting technique from C25A organo‐modified clay and a new biodegradable polyester derived from glycolic acid and 6‐hydroxyhexanonoic acid. This polyester has a sequential monomer distribution and high crystallinity, allowing a detailed study of its isothermal crystallization. The influence of the clay on the crystallization behavior was investigated by optical microscopy, simultaneous SAXS/WAXD synchrotron radiation and FTIR spectroscopy. Primary nucleation and crystal growth rate decreased significantly with the incorporation of nanoparticles. In addition, the overall crystallization rate of the nanocomposite was logically lower than that of the neat polyester. Bulk crystallizations were modeled from FTIR data with the Avrami equation. The results showed spherulite growth geometry and predetermined (heterogeneous) nucleation for both samples. Morphological studies revealed that both the crystal and the amorphous layer thicknesses were influenced by the presence of silicate layers. The overall percentage of crystallinity and the size of crystalline domains decreased with the addition of the highly miscible organoclay. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 33–46, 2010  相似文献   

12.
In this work, the miscibility effect on the localization of poly(butylene succinate) (PBSU) during the crystallization of PVDF in their blend has been investigated. After annealed at 200 °C and 240 °C, homogeneous and phase-separated structures can be obtained respectively, which was followed by isothermal crystallization at 141 °C. In the case of 200°C, PBSU tends to enrich in inner-spherulitic regions because of the excellent miscibility of the blend and the higher growth rate of PVDF crystals. When the specimen was annealed at 240 °C, phase separation produces PVDF and PBSU domains. Upon cooling to 141 °C, one part of PBSU is miscible with , while the other part of it remains as phase-separated domains due to the high viscosity and slow relaxation of them. The former accounts for the distribution of PBSU in inner-spherulitic regions. In the latter, however, phase-separated structures depress the diffusion of PVDF during its crystallization, leading to the lower magnitude of growth rate of spherulites. Both of them contribute to the localization of PBSU in inter-spherulitic regions. The distribution of PBSU among PVDF spherulites has been validated by long periods, pore size, and mechanical performance of the porous PVDF membranes.  相似文献   

13.
The morphology and formation process of interpenetrated spherulites of poly(butylene succinate)/poly(vinylidene choloride‐co‐vinyl chloride) (PBSU/PVDCVC) blends were investigated by confocal laser scanning microscopy (CLSM). CLSM images showed that the dense fibrils of PBSU spherulites penetrated into the sparse PVDCVC spherulites. For a blend with PBSU content 50% and crystallization temperature Tc = 368 K, the simultaneous growth of PBSU and PVDCVC spherulites was observed. After PBSU fibrils collided with PVDCVC spherulites, they kept growing through PVDCVC spherulites. For a blend with PBSU content 30% and Tc = 363 K, PBSU started to nucleate after PVDCVC spherulites filled the whole space.  相似文献   

14.
Wang  Jia-Yao  Li  Yong-Jin  You  Ji-Chun  Bian  Feng-Gang 《高分子科学》2022,40(6):631-641

In this work, phase segregation and localization of PBSU have been investigated with the combination of SAXS and DSC in its blend with PVDF. After stepwise crystallization of PVDF and PBSU, there are double melting peaks of PBSU in DSC and double scattering peaks in SAXS. It has been demonstrated that double peaks can be attributed to the localization of PBSU in interlamellar/interfibrillar region in pre-formed PVDF crystal framework. In the case of low content of PBSU in blend, PBSU is trapped into the interlamellar region of PVDF crystals, resulting in the alternating lamellae crystal of them and the first peak (with low-q) in SAXS. The enhanced confinement effect produces thinner PBSU lamellae, corresponding to the lower melting temperature in DSC. Upon increasing its content in blend, some PBSU segregates in interfibrillar regions in addition to the enrichment in interlamellar regions of PVDF crystal framework. The larger space and higher concentration of PBSU in interfibrillar-regions contribute to periodic lamellae structure of PBSU with higher thickness, which is the reason for the second peak (with high-q) in SAXS and DSC. Our results not only clarify the relationship between localization of PBSU in interlamellar/interfibrillar regions and double peaks in DSC/SAXS, but also provide a novel strategy to detect the interlamellar and interfibrillar segregation of low-Tm component in miscible crystalline/crystalline blend.

  相似文献   

15.
16.
The poly(trimethylene terephthalate) (PTT)/clay nanocomposite has been successfully prepared via melt intercalation using a co-rotating twin screw extruder. The nanocomposite was characterized by wide angle X-ray diffraction (WAXD), transmission electron microscope (TEM), differential scanning calorimetry (DSC), polarized light microscope (PLM) and dynamic mechanical analysis (DMA). The nanocomposite forms an exfoliated structure, which can be observed by WAXD and TEM. The effect of clay layers on the crystallization behaviors of PTT was studied through isothermal and non-isothermal crystallization methods. The results suggest that the introduction of nanosize clay layers accelerates the crystallization rate of PTT and the clay layers act as nucleation agents. The morphology of spherulites was investigated with PLM and the result is well in agreement with crystallization kinetics. DMA shows that glass transition temperature (Tg) and storage modulus (E) of the PTT matrix of the nanocomposite are higher than those of pure PTT.  相似文献   

17.
An intercalated nanocomposite made of montmorillonite nanoclay, MMT, and poly(trimethylene terephthalate), PTT, was produced by twin screw extrusion and characterized by wide angle X‐ray diffraction, WAXD, and transmission electron microscopy, TEM. The quiescent isothermal and non‐isothermal and the flow‐induced crystallization of the nanocomposite were studied by differential scanning calorimetry, DSC, polarized light optical microscopy, PLOM, and rheometry. The quiescent results showed that the nanoclay acted as an efficient nucleating agent for the PTT, which result in an anticipation of the transition temperature between regimes II and III of crystallization. The fold interfacial free energy, σe, of the PTT in the nanocomposite during regime III was lower than in the pure state; that is, the pure PTT developed spherulites, whereas in the nanocomposite it produced a paracrystalline morphology. Under shear rate, the total times for crystallization in the nanocomposite were higher than in the pure PTT. In flow‐induced crystallization, a fibrillar nucleus must be formed as a result of chain orientation. In the nanocomposite, chain orientation only occurred after the percolated structure was broken. Therefore, the formation of a fibrillar nucleus in the nanocomposite took more time, which increased the total crystallization time. Inc. J Polym Sci Part B: Polym Phys 48: 113–127, 2010  相似文献   

18.
The morphology of crystals, isothermal and non-isothermal crystallization of poly(methylene terephthalate) (PMT) have been investigated by using polarized optical microscopy and differential scanning calorimeter (DSC). The POM photographs displayed only several Maltese cross at the beginning short time of crystallization indicating that some spherulites had been formed. The crystal cell belonged to the Triclinic crystal systems and the cell dimensions were calculated from the WAXD pattern. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallization. The Ozawa theory was also used to analyze the primary stage of non-isothermal crystallization. The Avrami exponents n were evaluated to be in the range of 2-3 for isothermal crystallization, and 3-4 for non-isothermal crystallization. The Ozawa exponents m were evaluated to be in the range of 1-3 for non-isothermal crystallization in the range of 135-155 °C. The crystallization activation energy was calculated to be −78.8 kJ/mol and −94.5 kJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius’ formula and the Kissinger’s methods.  相似文献   

19.
PET/silica nanocomposite fibers of high quality were fabricated from electrospinning by choosing appropriate surface modification of inorganic fillers, solution properties, and processing conditions. The existence of an immobilized layer around silane-modified silica particles in PET fibers was verified by Fourier transform infrared spectroscopy, the results of which confirm previous thermal analysis studies. The influence of silica particles on the crystal growth during isothermal crystallization as well as the phase structure of the crystallized nanocomposite fibers were examined using differential scanning calorimetry. The PET crystallization rate increases significantly with increasing silica content, which indicates that the silica nanoparticles act as an efficient nucleating agent to facilitate PET crystallization. Using Avrami analysis, for the first time, preferred 1-D crystal growth was confirmed for geometrically confined nanocomposite fibers. Addition of silica particles makes the crystal growth more likely to occur in a 1-D manner.  相似文献   

20.
The isothermal crystallization behaviour of polylactic acid (PLA) and a clay nanocomposite of have been examined using differential scanning calorimetry. The data obtained clearly indicates that the presence of the nanocomposite particles in the composite material influences the crystallization kinetics of the PLA when crystallized both from the solid amorphous state as well as from the melt. When crystallized from the melt the presence of the clay nano-particles appears to be influencing the nucleation and crystal growth rate of the PLA such that the crystallization rate is enhanced by a factor of about 15 to 20. This result is of tremendous significance in identifying the processing window for the production of foamed nanocomposites from PLA. In addition the effect of thermal exposure at 200°C on the crystallization behaviour of these materials has been investigated, with the results suggesting that holding these materials at 200°C for periods of time up to 60 min in an inert atmosphere only has a marginal effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号