首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This work aimed at effectively utilizing the chemically depolymerized waste poly(ethylene terephthalate)(PET) fibers into useful products for the textile industry.PET fibers were glycolytically degraded by excess ethylene glycol as depolymerizing agent and zinc acetate dihydrate as catalyst.The glycolysis product,bis(2-hydroxyethyl) terephthalate(BHET),was purified through repeated crystallization to get an average yield above 80%.Then,BHET was nitrated,reduced,and azotized to get diazonium salt.Finally,the produced diazonium salt was coupled with 1-(4-sulfophenyl)-3-methyl-5-pyrazolone to get azo dyestuff.The structures of BHET and azo dyestuff were identified by FT1 R and ~1H NMR spectra and elemental analysis.Nylon filaments dyed by the synthesized azo dyestuff with the dye bath pH from 4.14 to 5.88 showed bright yellow color.The performances of the dyestuff were described with dye uptake,color fastness,K/S,L~*,a~*,b~*.and △E~* values.  相似文献   

2.
Summary: Dyeing processes using supercritical fluid present advantages over the conventional dyeing process using aqueous medium. Previous works from our group on polymeric fibers such as N,N-dimethylacrylamide (DMAAm) modified poly(ethylene terephthalate), PET, showed higher sorption of disperse dyes in supercritical medium. Furthermore, recent studies showed that the association of UV radiation and DMAAm treatment leads to a better incorporation of dyes in modified PET soaked in aqueous medium. In this work, modified and non-modified PET knitted fabrics (KF) were dyed in supercritical CO2 medium. Azo and anthraquinone dyes were used in order to compare the extent of incorporated dye in PET films and PET KF in supercritical CO2. The dyeing process variables were studied by factorial design and by a response surface methodology (RSM) technique. The anthraquinone dye presented a better incorporation in PET than the azo dye. The UV light exposure and the dyeing times inputs showed positive main effects in the incorporation of dyes in PET films and PET KF. From the RSM data, DMAAm and UV light modified PET KF presented 7.43 mg of incorporated azo dye by g of PET if the optimized dyeing conditions, time: 135 min and pressure: 212 bar would be used. In the respective optimized dyeing conditions for the anthraquinone dye, time 150 min and pressure 229 bar, the incorporated dye would be 22.9 mg of dye by g of PET.  相似文献   

3.
The methanolytic degradation of poly(ethylene terephthalate) (PET) copolymers containing nitroterephthalic units was investigated. Random poly(ethylene terephthalate‐co‐nitroterephthalate) copolyesters (PETNT) containing 15 and 30 mol % nitrated units were prepared from ethylene glycol and a mixture of dimethyl terephthalate and dimethyl nitroterephthalate. A detailed study of the influence of the nitro group on the methanolytic degradation rate of the nitrated bis(2‐hydroxyethyl) nitroterephthalate (BHENT) model compound in comparison with the nonnitrated bis(2‐hydroxyethyl) terephthalate (BHET) model compound was carried out. The kinetics of the methanolysis of BHENT and BHET were evaluated with high‐performance liquid chromatography and 1H NMR spectroscopy. BHENT appeared to be much more reactive than BHET. The methanolytic degradation of PET and PETNT copolyesters at 80 °C was followed by changes in the weight and viscosity, gel permeation chromatography, differential scanning calorimetry, scanning electron microscopy, and 1H and 13C NMR spectroscopy. The copolyesters degraded faster than PET, and the degradation increased with the content of nitrated units and occurred preferentially by cleavage of the ester groups placed at the meta position of the nitro group in the nitrated units. For both PET and PETNT copolyesters, an increase in crystallinity accompanied methanolysis. A surface degradation mechanism entailing solubilization of the fragmented polymer and consequent loss of mass was found to operate in the methanolysis of the copolyesters. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2276–2285, 2002  相似文献   

4.
To increase the Tg in combination with a retained crystallization rate, bis(2‐hydroxyethyl)terephthalate (BHET) was incorporated into poly(butylene terephthalate) (PBT) via solid‐state copolymerization (SSP). The incorporated BHET fraction depends on the miscibility of BHET in the amorphous phase of PBT prior to SSP. DSC measurements showed that BHET is only partially miscible. During SSP, the miscible BHET fraction reacts via transesterification reactions with the mobile amorphous PBT segments. The immiscible BHET fraction reacts by self‐condensation, resulting in the formation of poly(ethylene terephthalate) (PET) homopolymer. 1H‐NMR sequence distribution analysis showed that self‐condensation of BHET proceeded faster than the transesterification with PBT. SAXS measurements showed an increase in the long period with increasing fraction BHET present in the mixtures used for SSP followed by a decrease due to the formation of small PET crystals. DSC confirmed the presence of separate PET crystals. Furthermore, the incorporation of BHET via SSP resulted in PBT‐PET copolymers with an increased Tg compared to PBT. However, these copolymers showed a poorer crystallization behavior. The modified copolymer chain segments are apparently fully miscible with the unmodified PBT chains in the molten state. Consequently, the crystal growth process is retarded resulting in a decreased crystallization rate and crystallinity. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 882–899, 2007.  相似文献   

5.
The glycolysis of poly(ethylene terephthalate) (PET) was studied using several ionic liquids and basic ionic liquids as catalysts. The basic ionic liquid, 1-butyl-3-methylimidazolium hydroxyl ([Bmim]OH), exhibits higher catalytic activity for the glycolysis of PET, compared with 1-butyl-3-methylimidazolium bicarbonate ([Bmim]HCO3), 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and 1-butyl-3-methylimidazolium bromide ([Bmim]Br). FT-IR, 1H NMR and DSC were used to confirm the main product of glycolysis was bis(2-hydroxyethyl) terephthalate (BHET) monomer. The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and dosages of ethylene glycol on the conversion of PET, yield of BHET were investigated. The results showed a strong influence of the mixture evolution of temperature and reaction time on depolymerization of PET. Under the optimum conditions of m(PET):m(EG): 1:10, dosage of [Bmim]OH at 0.1 g (5 wt%), reaction temperature 190 °C and time 2 h, the conversion of PET and the yield of BHET were 100% and 71.2% respectively. Balance between the polymerization of BHET and depolymerization of PET could be changed when the reaction time was more than 2 h and contents of catalyst and EG were changed.  相似文献   

6.
The methanolysis of poly(ethylene terephthalate) (PET) copolymers containing 5‐nitroisophthalic units was investigated. Random copolyesters containing 10 and 30 mol % of such units were prepared via a two‐step melt copolycondensation of bis(2‐hydroxyethyl) terephthalate (BHET) and bis(2‐hydroxyethyl) 5‐nitroisophthalate (BHENI) in the presence of tetrabutyl titanate as a catalyst. First, the susceptibility of these two comonomers toward methanolysis was evaluated, and their reaction rates were estimated with high‐performance liquid chromatography. BHENI appeared to be much more reactive than both BHET and bis(2‐hydroxyethyl) isophthalate. The methanolysis of PET and the copolyesters was carried out at 100 °C, and the degradation process was followed by changes in the weight and viscosity, gel permeation chromatography, differential scanning calorimetry, and 1H and 13C NMR spectroscopy. The copolyesters degraded faster than PET, and the rate of degradation increased with the content of nitrated units. The products resulting from methanolysis were concluded to be dimethyl terephthalate, dimethyl 5‐nitroisophthalate, ethylene glycol, and small, soluble oligomers. For both PET and the copolyesters, an increase in crystallinity was observed during the degradation process, indicating that methanolysis preferentially occurred in the amorphous phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 76–87, 2002  相似文献   

7.
Summary: The tetrabutylorthotitanate (TBOT) was hydrolyzed by H2O produced during the esterification of pure terephthalic acid (PTA) and ethylene glycol (EG), and the bis(2-hydroxyethyl) terephthalate (BHET)/titanium compound nanocomposite was in-situ formed. The effect of TBOT on the esterification and its product property has been investigated. The results show that the butyl alcohol from the hydrolysis of TBOT is almost distilled out with H2O and there has no effect on the chemical structure of BHET caused by the introducing of TBOT. A kind of novel titanium compound is manufactured during the esterification under the existence of TBOT, which shows slice-like morphology from SEM micrographs and special XRD pattern with new diffraction peaks between 2-Θ = 6.9° and 10.2°. It is found that the BHET/titanium compound nanocomposite can act as the catalyst of polymerization of poly(ethylene terephthalate) (PET). The PET resins synthesized by in-situ formed catalyst have almost the same physicochemical properties with the commerced resins and have good spinnability.  相似文献   

8.
Glycolysis of poly (ethylene terephthalate) bottle waste was carried out using microwave energy. A domestic microwave oven of 800 W was used with suitable modification for carrying out the reaction under reflux. The catalysts used for the depolymerization in ethylene glycol (EG) were zinc acetate and some simple laboratory chemicals such as sodium carbonate, sodium bicarbonate and barium hydroxide. Comparison of results was made from the point of view of the yield of bis (2-hydroxyethylene) terephthalate (BHET) and the time taken for depolymerization. It was observed that under identical conditions of catalyst concentration and PET:EG ratio, the yield of BHET was nearly same as that obtained earlier by conventional electric heating. However, the time taken for completion of reaction was reduced drastically from 8 h to 35 min. This has led to substantial saving in energy.  相似文献   

9.
The effect of aqueous solutions of selected ionic liquids solutions on Ideonella sakaiensis PETase with bis(2-hydroxyethyl) terephthalate (BHET) substrate were studied by means of molecular dynamics simulations in order to identify the possible effect of ionic liquids on the structure and dynamics of enzymatic Polyethylene terephthalate (PET) hydrolysis. The use of specific ionic liquids can potentially enhance the enzymatic hydrolyses of PET where these ionic liquids are known to partially dissolve PET. The aqueous solution of cholinium phosphate were found to have the smallest effect of the structure of PETase, and its interaction with (BHET) as substrate was comparable to that with the pure water. Thus, the cholinium phosphate was identified as possible candidate as ionic liquid co-solvent to study the enzymatic hydrolyses of PET.  相似文献   

10.
Poly(ethylene terephthalate)-poly(lactic acid) (PET-PLLA) copolyesters were synthesized by the melt reaction of bis(2-hydroxyethyl terephthalate) (BHET) with l-lactic acid oligomers (OLLA) in the presence of SnCl2, H2O-p-toluene sulfonic acid, H2O catalytic system. The 1H and 13C NMR studies confirm the incorporation of lactate units in PET chains after reaction. Copolyesters containing nearly equimolar terephthalate/lactate ratio are not completely random and present some block-copolymer character, while the microstructure of PET-rich copolyesters is a random one. Due to a longer PET sequence length, the latter exhibit a melting point close to 210 °C while the other ones are amorphous. SEC/MALDI-TOF MS off-line coupling was used to obtain the absolute average molar masses of the copolyesters. The results indicate that the conventional polystyrene calibration method leads to a strong overestimation of PET-PLLA molar masses, while the determined by NMR is much closer to the SEC/MALDI value.  相似文献   

11.
Sub- and supercritical glycolysis of polyethylene terephthalate (PET) with ethylene glycol (EG) to bis(2-hydroxyethyl) terephthalate (BHET) was investigated for the purpose of developing a PET recycling process. Supercritical glycolysis was carried out at 450 °C and 15.3 MPa while subcritical glycolysis was carried out at 350 °C and 2.49 MPa or at 300 °C and 1.1 MPa. High yields (gt; 90%) of the monomer BHET were obtained in both super- and subcritical cases. For the same PET/EG weight ratio of about 0.06, the optimum reaction time was 30 min for supercritical glycolysis and 75 and 120 min for two cases of subcritical glycolysis. GPC, RP-HPLC, 1H NMR and 13C NMR, and DSC were used to characterize the polymer and reaction products. Supercritical glycolysis will be suitable to a process requiring a high throughput due to its short reaction time.  相似文献   

12.
The long time lag between fiber spinning and the availability of characteristic data for process evaluation currently complicates research in hollow fiber membrane formation. This lag time is due to the down-stream processing required before traditional gas based permeation measurements can be made on the spun fiber. A rapid feedback characterization technique, based on commercially available disperse dyes, is described here for polymeric hollow fiber membrane spinning applications. This technique involves dyeing wet hollow fibers, immediately after spinning, in an aqueous dye bath. In the present work, polysulfone fibers are shown to be characterizable using this method before lengthy down-stream processing (i.e. solvent exchange, drying, and post-treatment). Dye uptake in the hollow fibers is a function of skin porosity, thereby allowing quick evaluation of permeation characteristics. Dye uptake was measured using UV-visible spectrophotometry. Examples of fibers characterized using this technique and relationships between dye uptake and post-treated permselectivity are shown and discussed.  相似文献   

13.
A novel synthetic method for the preparation of copolyesters comprised of diols and bisphenols using tosyl chloride (TsCl)/DMF/pyridine (Py) as a condensing agent has been developed. A variety of combinations of monomers could produce relatively high molecular weight copolymers, and better results were obtained by initial oligomerization of diols followed by bisphenols. In order to demonstrate usefulness of this method, copolymers comprised of IPA/TPA (50/50), bis(2‐hydroxyethyl)terephthalate (BHET),and several bisphenols were prepared and compared to the poly(ethylene terephthalate) (PET) modified by TPA and 2,2‐bis(4‐hydroxyphenyl)propane (BPA) diacetate in terms of their thermal properties. The length of mesogenic unit segments in the thermotropic IPA/TPA (50/50)‐BHET/ 4,4′‐dihydroxybenzophenone (4,4′‐DHBP) (50/50) copolymer was changed by initial reaction of BHET followed by dropwise addition of 4,4′‐DHBP in the two‐stage polycondensation and also by varying the amounts of BHET used at the initial and final stages in the three‐stage copolycondensation, and the results were studied by NMR and their thermal properties. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1270–1276, 2000  相似文献   

14.
Poly(ethylene terephthalate) (PET) from an industrial manufacturer was depolymerized by ethylene glycol in the presence of a novel catalyst: ionic liquids. It was found that the purification process of the products in the glycolysis catalyzed by ionic liquids was simpler than that catalyzed by traditional compounds, such as metal acetate. Qualitative analysis showed that the main product in the glycolysis process was the bis(hydroxyethyl) terephthalate (BHET) monomer. Thermal analysis of the glycolysis products was carried out by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and water content in the catalyst on the conversion of PET, selectivity of BHET, and distribution of the products were investigated. Results show that reaction temperature is a critical factor in this process. In addition, a detailed reaction mechanism of the glycolysis of PET was proposed.  相似文献   

15.
We describe the organocatalytic depolymerization of poly(ethylene terephthalate) (PET), using a commercially available guanidine catalyst, 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD). Postconsumer PET beverage bottles were used and processed with 1.0 mol % (0.7 wt %) of TBD and excess amount of ethylene glycol (EG) at 190 °C for 3.5 hours under atmospheric pressure to give bis(2‐hydroxyethyl) terephthalate (BHET) in 78% isolated yield. The catalyst efficiency was comparable to other metal acetate/alkoxide catalysts that are commonly used for depolymerization of PET. The BHET content in the glycolysis product was subject to the reagent loading. This catalyst influenced the rate of the depolymerization as well as the effective process temperature. We also demonstrated the recycling of the catalyst and the excess EG for more than 5 cycles. Computational and experimental studies showed that both TBD and EG activate PET through hydrogen bond formation/activation to facilitate this reaction. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Copolyesters with an alternating sequence of terephthalic acid and aliphatic dicarboxylic acids were prepared with three different methods. First, dicarboxylic acid dichlorides were reacted with bis(2‐hydroxyethyl)terephthalate (BHET) in refluxing 1,2‐dichlorobenzene. Second, the same monomers were polycondensed at 0–20 °C in the presence of pyridine. Third, dicarboxylic acid dichlorides and silylated BHET were polycondensed in bulk. Only this third method gave satisfactory molecular weights. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry revealed that the copolyesters prepared by the pyridine and silyl methods might have contained considerable fractions of cyclic oligoesters and polyesters despite the absence of transesterification and backbiting processes. The alternating sequences and thermal properties were characterized with 1H NMR spectroscopy and differential scanning calorimetry measurements, respectively. In agreement with the alternating sequence, all copolyesters proved to be crystalline, but the crystallization was extremely slow [slower than that of poly(ethylene terephthalate)]. A second series of alternating copolyesters was prepared by the polycondensation of silylated bis(4‐hydroxybut‐ yl)terephthalate with various aliphatic dicarboxylic acid dichlorides. The resulting copolyesters showed significantly higher rates of crystallization, and the melting temperatures were higher than those of the BHET‐based copolyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3371–3382, 2001  相似文献   

17.
配合超临界甲醇解聚聚对苯二甲酸乙二醇酯的工艺开发,采用高效液相色谱法对聚对苯二甲酸二乙酯的超临界甲醇解聚固体产物进行了分离、定性和定量分析。采用反相色谱体系,色谱柱为Zorbax-C8柱,流动相为甲醇-水(70/30,V/V),紫外检测器。该法具有高色谱分辨率、简便、准确、重复性好等特点。  相似文献   

18.
Starting with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and methyl aminobenzoate, we synthesized a novel rodlike imide‐containing monomer, N,N′‐bis[p‐(methoxy carbonyl) phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BMBI). The polycondensation of BMBI with dimethyl terephthalate and ethylene glycol yielded a series of copoly(ester imide)s based on the BMBI‐modified poly(ethylene terephthalate) (PET) backbone. Compared with PET, these BMBI‐modified polyesters had higher glass‐transition temperatures and higher stiffness and strength. In particular, the poly(ethylene terephthalate imide) PETI‐5, which contained 5 mol % of the imide moieties, had a glass‐transition temperature of 89.9 °C (11 °C higher than the glass‐transition temperature of PET), a tensile modulus of 869.4 MPa (20.2 % higher than that of PET), and a tensile strength of 80.8 MPa (38.8 % higher than that of PET). Therefore, a significant reinforcing effect was observed in these imide‐modified polyesters, and a new approach to higher property polyesters was suggested. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 852–863, 2002; DOI 10.1002/pola.10169  相似文献   

19.
2,2'-Bis (4H-3, 1-benzoxazin-4-one) (BBON) has been proved to be an effective chainextender for poly (ethylene terephthalate) (PET). In order to study the reaction mechanismand kinetics of chain-extending reaction, β-bishydroxyethylene terephthalate (BHET) wasselected as model compound. The NMR data, IR spectra and number average molecularweight (M_n) of the products obtained from the reaction of BBON and BHET verify thatBBON is a hydroxyl-reactive extender. The mechanism was discussed. Kinetics dataindicate that extending reaction is a second order reaction, and BBON has high reactivity.The activation energy (E_a) was measured.  相似文献   

20.
This research discussed the effect of the addition of antimony catalyst on diethylene glycol (DEG) formation in poly(ethylene terephthalate) (PET) synthesis. It was found that antimony catalyst increased DEG formation in the preparation of PET, in particular, during the esterification stage and also during the prepolycondensation stage. To further discuss the effect of antimony catalyst on DEG formation in the preparation of PET, this research also focused on the kinetics of DEG formation during PET synthesis from purified bishydroxyethyl terephthalate (BHET) monomer with antimony catalyst. The rate expression of DEG formation from BHET monomer and antimony catalyst was described. It was found that the activation energy of BHET monomer with antimony catalyst in DEG formation is lower than that of BHET monomer without the addition of catalyst. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1797–1803, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号