首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoregulation of DNA triplex formation by azobenzene   总被引:2,自引:0,他引:2  
Formation and dissociation of DNA triplex are reversibly photoregulated by cis <--> trans isomerization of the azobenzene tethered to the third strand. When the azobenzene takes the trans from, a stable triplex is formed. Upon the isomerization of trans-azobenzene to its cis form by UV light irradiation (300 < lambda < 400 nm), however, the modified oligonucleotide is removed from the target duplex. The triplex is re-formed on photoinduced cis --> trans isomerization (lambda > 400 nm). The photoregulating activity significantly depends on the position of azobenzene in the third strand, as well as on the geometric position (meta or para) of its amido substituent. For m-amidoazobenzene, the photoregulation is the most effective when it is tethered to the 5'-end of the third strand. However, p-amidoazobenzene should be introduced into the middle of the strand for effective regulation. In the optimal cases, the change of T(m) of the triplex, caused by the cis <--> trans isomerization of azobenzene, is greater than 30 degrees C. UV-visible and CD spectroscopy, as well as computer modeling studies, clearly demonstrate that the trans-azobenzene intercalates between the base pairs in the target duplex and thus stabilizes the triplex by stacking interactions. On the other hand, nonplanar cis-azobenzene destabilizes the triplex due to its steric hindrance against the adjacent base pairs.  相似文献   

2.
By introducing azobenzenes into RNA using d-threoninol as a scaffold, a photoresponsive RNA was constructed for efficiently photoswitching the formation and dissociation of RNA/RNA duplexes. The difference in melting temperature (T(m)) between the trans and cis forms was so large that efficient photoregulation of RNA hybridization became possible, irrespective of the sequence adjacent to the introduced azobenzene. Compared to the corresponding photoresponsive DNA, the photoregulatory efficiency of azobenzene-modified RNA was even higher due to the drastic destabilization by cis-azobenzene. Structural analysis by NMR and molecular modeling indicated that the planar trans-azobenzene could not stabilize the RNA/RNA duplex with a rigid A-form structure by base pair stacking. However, the large steric hindrance caused by nonplanar cis-azobenzene was quite effective at distorting and destabilizing the duplex structure. We also discuss the effect of methylation of azobenzene at the ortho positions on photoregulation of RNA/RNA duplex formation. This newly constructed photoresponsive RNA has promising applications such as photoswitching of RNA functions.  相似文献   

3.
The photoisomerization properties of tris(bipyridine)cobalt complexes containing six or three azobenzene moieties, namely, [Co(II)(dmAB)3](BF4)2 [dmAB = 4,4'-bis[3'-(4'-tolylazo)phenyl]-2,2'-bipyridine], [Co(III)(dmAB)3](BF4)3, [Co(II)(mAB)3](BF4)2 [mAB = 4-[3' '-(4' '-tolylazo)phenyl]-2,2'-bipyridine], and [Co(III)(dmAB)3](BF4)3, derived from the effect of gathering azobenzenes in one molecule and the effect of the cobalt(II) or cobalt(III) ion were investigated using UV-vis absorption spectroscopy, femtosecond transient spectroscopy, and 1H NMR spectroscopy. In the photostationary state of these four complexes, nearly 50% of the trans-azobenzene moieties of the Co(II) complexes were converted to the cis isomer, and nearly 10% of the trans-azobenzene moieties of the Co(III) complexes isomerized to the cis isomer, implying that the cis isomer ratio in the photostationary state upon irradiation at 365 nm is controlled not by the number of azobenzene moieties in one molecule but rather by the oxidation state of the cobalt ions. The femtosecond transient absorption spectra of the ligands and the complexes suggested that the photoexcited states of the azobenzene moieties in the Co(III) complexes were strongly deactivated by electron transfer from the azobenzene moiety to the cobalt center to form an azobenzene radical cation and a Co(II) center. The cooperation among the photochemical structural changes of six azobenzene moieties in [Co(II)(dmAB)3](BF4)2 was investigated with 1H NMR spectroscopy. The time-course change in the 1H NMR signals of the methyl protons indicated that each azobenzene moiety in [Co(II)(dmAB)3](BF4)2 isomerized to a cis isomer with a random probability of 50% and without interactions among the azobenzene moieties.  相似文献   

4.
In this study, we investigated the stability and structure of artificial base pairs that contain cyclohexyl rings. The introduction of a single pair of isopropylcyclohexanes into the middle of DNA slightly destabilized the duplex. Interestingly, as the number of the "base pairs" increased, the duplex was remarkably stabilized. A duplex with six base pairs was even more stable than one containing six A-T pairs. Thermodynamic analysis revealed that changes in entropy and not enthalpy contributed to duplex stability, demonstrating that hydrophobic interactions between isopropyl groups facilitated the base pairing, and thus stabilized the duplex. NOESY of a duplex containing an isopropylcyclohexane-methylcyclohexane pair unambiguously demonstrated its "pairing" in the duplex because distinct NOEs between the protons of cyclohexyl moieties and imino protons of both of the neighboring natural base pairs were observed. CD spectra of duplexes tethering cyclohexyl moieties also showed a positive-negative couplet that is characteristic of the B-form DNA duplex. Taken together, these results showed that cyclohexyl moieties formed base pairs in the DNA duplex without severely disturbing the helical structure of natural DNA. Next, we introduced cyclohexyl base pairs between pyrene and nucleobases as an "insulator" that suppresses electron transfer between them. We found a massive increase in the quantum yield of pyrene due to the efficient shielding of pyrene from nucleobases. The cyclohexyl base pairs reported here have the potential to prepare highly fluorescent labeling agents by multiplying fluorophores and insulators alternately into DNA duplexes.  相似文献   

5.
Preceding NMR experiments show that the conformation of tandem GA base pairs, an important recurrent non-canonical building block in RNA duplexes, is context dependent. The GA base pairs adopt "sheared" N3(G)-N6(A), N2(G)-N7(A) geometry in the r(CGAG)(2) and r(iGGAiC)(2) contexts while switching to "imino" N1(G)-N1(A), O6(G)-N6(A) geometry in the r(GGAC)(2) and r(iCGAiG)(2) contexts (iC and iG stand for isocytosine and isoguanine, respectively). As base stacking is likely to be one of the key sources of the context dependence of the conformation of GA base pairs, we calculated base stacking energies in duplexes containing such base pairs, to see if this dependence can be predicted by stacking energy calculations. When investigating the context dependence of the GA geometry two different conformations of the same duplex were compared (imino vs. sheared). The geometries were generated via explicit solvent MD simulations of the respective RNA duplexes, while the subsequent QM energy calculations focused on base stacking interactions of the four internal base pairs. Geometrical relaxation of nucleobase atoms prior to the stacking energy computations has a non-negligible effect on the results. The stacking energies were derived at the DFT-D/6-311++G(3df,3pd) level. We show a rather good correspondence between the intrinsic gas-phase stacking energies and the NMR-determined GA geometries. The conformation with more favorable gas-phase stacking is in most cases the one observed in experiments. This correlation is not improved when including solvent effects via the COSMO method. On the other side, the stacking calculations do not predict the relative thermodynamic stability of duplex formation for different sequences.  相似文献   

6.
The Langmuir-Schaefer (LS) films of an achiral azobenzene derivative, 4-octyl-4'-(5-carboxypentamethyleneoxy) azobenzene (C8AzoC5), were fabricated and their optical activities were investigated. It was found that the LS film of the trans-C8AzoC5 showed strong Cotton effect, while that of cis-C8AzoC5 did not. The characterization of the LS films by UV-vis, Fourier transform infrared (FT-IR) spectra, and X-ray diffraction (XRD) revealed that this interesting phenomenon was due to the different packing of the azobenzene unit in the LS film. The planar conjugated trans-azobenzene favored ordered cooperative packing in a helical sense and produced the supramolecular chirality, while the cis-isomer did not due to the bulky twisted configuration.  相似文献   

7.
The synthesis and thermal stability of oligodeoxynucleotides (ODNs) containing imidazo[5',4':4,5]pyrido[2,3-d]pyrimidine nucleosides 1-4 (N(N), O(O), N(O), and O(N), respectively) with the aim of developing two sets of new base pairing motifs consisting of four hydrogen bonds (H-bonds) is described. The proposed four tricyclic nucleosides 1-4 were synthesized through the Stille coupling reaction of a 5-iodoimidazole nucleoside with an appropriate 5-stannylpyrimidine derivative, followed by an intramolecular cyclization. These nucleosides were incorporated into ODNs to investigate the H-bonding ability. When one molecule of the tricyclic nucleosides was incorporated into the center of each ODN (ODN I and II, each 17mer), no apparent specificity of base pairing was observed, and all duplexes were less stable than the duplexes containing natural G:C and A:T pairs. On the other hand, when three molecules of the tricyclic nucleosides were consecutively incorporated into the center of each ODN (ODN III and IV, each 17mer), thermal and thermodynamic stabilization of the duplexes due to the specific base pairings was observed. The melting temperature (T(m)) of the duplex containing the N(O):O(N) pairs showed the highest T(m) of 84.0 degrees C, which was 18.2 and 23.5 degrees C higher than that of the duplexes containing G:C and A:T pairs, respectively. This result implies that N(O)and O(N) form base pairs with four H-bonds when they are incorporated into ODNs. The duplex containing N(O):O(N) pairs was markedly stabilized by the assistance of the stacking ability of the imidazopyridopyrimidine bases. Thus, we developed a thermally stable new base pairing motif, which should be useful for the stabilization and regulation of a variety of DNA structures.  相似文献   

8.
For the photomodulation of the collagen triple helix with an azobenzene clamp, we investigated various collagenous peptides consisting of ideal (Gly-Pro-Hyp) repeats and containing cysteine residues in various positions for a side chain-to-side chain crosslink with a suitable chromophore derivative. Comparative conformational analysis of these cysteine peptides indicated an undecarepeat peptide with two cysteine residues located in the central portion in i and i+7 positions and flanked by (Gly-Pro-Hyp) repeat sequences as the most promising for the cross-bridging experiments. In aqueous alcoholic solution the azobenzene-undecarepeat peptide formed a stable triple helix in equilibrium with the monomeric species as a trans-azobenzene isomer, whereas photoisomerization to the cis isomer leads to unfolding of at least part of the triple helix. Furthermore, the residual supercoiled structure acts like an intermolecular knot, thus making refolding upon cis-to-trans isomerization a concentration-independent fast event. Consequently, these photoswitchable collagenous systems should be well suited for time-resolved studies of folding/unfolding of the collagen triple helix under variable thermodynamic equilibria.  相似文献   

9.
We report the synthesis of 1'-deoxy-1'-(benzimidazol-1-yl)-beta-D-ribofuranose 7 and 1'-deoxy-1'-phenyl-beta-D-ribofuranose 2. With these two ribonucleoside analogues we have a set of nine different RNA building blocks in hand, which are isostere to the natural bases. Now it is possible to investigate their duplex stabilizing forces. These forces are hydrogen bonds, base stacking, and solvation. The phosphoramidites of all building blocks were incorporated into a 12mer RNA, and the resulting RNA duplexes were investigated by UV- and CD-spectroscopy. We found that some of the RNA analogues are universal bases. The best universal bases with the lowest destabilization and the smallest discrimination between the natural bases are 1 (B) and 9 (E). On the basis of UV measurements we determined the melting points and the thermodynamic data. We were able to show that there are no hydrogen bonds between the natural bases and the RNA analogues. From thermodynamic data we calculated the contributions for base stacking and solvation of all modified building blocks. Comparison of calculated and measured data of double modified base pairs in 12mer RNA duplexes showed a further duplex stabilizing force in base pairs containing fluorine atoms at the Watson-Crick binding site. This stabilizing force can be defined as C-F.H-C hydrogen bond as is observed in crystal structures of 1'-deoxy-1'-(4-fluorophenyl)-beta-D-ribofuranose.  相似文献   

10.
Metal-mediated base pair formation, resulting from the interaction between metal ions and artificial bases in oligonucleotides, has been developed for its potential application in nanotechnology. We have recently found that the T:T mismatched base pair binds with Hg(II) ions to generate a novel metal-mediated base pair in duplex DNA. The thermal stability of the duplex with the T-Hg-T base pair was comparable to that of the corresponding T:A or A:T. The novel T-Hg-T base pair involving the natural base thymine is more convenient than the metal-mediated base pairs involving artificial bases due to the lack of time-consuming synthesis. Here, we examine the specificity and thermodynamic properties of the binding between Hg(II) ions and the T:T mismatched base pair. Only the melting temperature of the duplex with T:T and not of the perfectly matched or other mismatched base pairs was found to specifically increase in the presence of Hg(II) ions. Hg(II) specifically bound with the T:T mismatched base pair at a molar ratio of 1:1 with a binding constant of 10(6) M(-1), which is significantly higher than that for nonspecific metal ion-DNA interactions. Furthermore, the higher-order structure of the duplex was not significantly distorted by the Hg(II) ion binding. Our results support the idea that the T-Hg-T base pair could eventually lead to progress in potential applications of metal-mediated base pairs in nanotechnology.  相似文献   

11.
The base‐pairing properties of 5‐mercuricytosine have been explored at the monomer level by NMR titrations and at the oligonucleotide level by melting temperature measurements. The NMR studies revealed a relatively high affinity for guanine, hypoxanthine, and uridine, that is, bases that are deprotonated upon coordination of HgII. Within an oligonucleotide duplex, 5‐mercuricytosine formed HgII‐mediated base pairs with thymine and guanine. In the former case, the duplex formed was as stable as the respective duplex comprising solely Watson–Crick base pairs. Based on detailed thermodynamic analysis of the melting curves, the stabilization by the HgII‐mediated base pairs may be attributed to a comparatively low entropic penalty of hybridization.  相似文献   

12.
13.
The duplex-forming activity of an oligonucleotide has been photoregulated by making use of the isomerization of an azobenzene moiety in the side chain. When the azobenzene moiety is isomerized from the trans form to the cis form upon photoirradiation, the melting temperature of the duplex between the oligonucleotide and its complementary counterpart is significantly lowered, and the duplex is largely dissociated into two single-stranded oligonucleotides (shown schematically).  相似文献   

14.
A photoresponsive integrin ligand was synthesized by backbone-cyclization of a heptapeptide containing the integrin binding motif Arg-Gly-Asp (RGD) with 4-(aminomethyl)phenylazobenzoic acid (AMPB). Surface plasmon enhanced fluorescence spectroscopy showed that binding of the azobenzene peptide to alpha(v)beta(3) integrin depends on the photoisomeric state of the peptide chromophore. The higher affinity of the trans isomer could be rationalized by comparing the NMR conformations of the cis and trans isomers with the recently solved X-ray structure of a cyclic RGD-pentapeptide bound to integrin.  相似文献   

15.
Joseph J  Schuster GB 《Organic letters》2007,9(10):1843-1846
Thymine-Hg(II)-thymine base pairs have been incorporated in an oligonucleotide duplex to study their effect on DNA-mediated charge transport. The introduction of a formally charged Hg atom inside the DNA base core does not significantly alter the charge hopping and trapping properties, as discussed in this paper. Hg(II) replaces the protons normally found on thymines within the complex and acts like a "big proton" in terms of its role in DNA charge transport.  相似文献   

16.
Cidofovir (1(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine, CDV) is a potent inhibitor of orthopoxvirus DNA replication. Prior studies have shown that, when CDV is incorporated into a growing primer strand, it can inhibit both the 3'-to-5' exonuclease and the 5'-to-3' chain extension activities of vaccinia virus DNA polymerase. This drug can also be incorporated into DNA, creating a significant impediment to trans-lesion DNA synthesis in a manner resembling DNA damage. CDV and deoxycytidine share a common nucleobase, but CDV lacks the deoxyribose sugar. The acyclic phosphonate bears a hydroxyl moiety that is equivalent to the 3'-hydroxyl of dCMP and permits CDV incorporation into duplex DNA. To study the structural consequences of inserting CDV into DNA, we have used (1)H NMR to solve the solution structures of a dodecamer DNA duplex containing a CDV molecule at position 7 and of a control DNA duplex. The overall structures of both DNA duplexes were found to be very similar. We observed a decrease of intensity (>50%) for the imino protons neighboring the CDV (G6, T8) and the cognate base G18 and a large chemical shift change for G18. This indicates higher proton exchange rates for this region, which were confirmed using NMR-monitored melting experiments. DNA duplex melting experiments monitored by circular dichroism revealed a lower T(m) for the CDV DNA duplex (46 °C) compared to the control (58 °C) in 0.2 M salt. Our results suggest that the CDV drug is well accommodated and stable within the dodecamer DNA duplex, but the stability of the complex is less than that of the control, suggesting increased dynamics around the CDV.  相似文献   

17.
A large amount of experimental evidence is available for the effects of magnesium ions on the structure and the stability of the DNA double helix. Less is known, however, on how these ions affect the dynamics of the molecule and the stability of each individual base pair. The present work addresses these questions by a study of the DNA duplex [dCGCAGATCTGCG]2, and its interactions with magnesium ions using nuclear magnetic resonance (NMR) spectroscopy and proton exchange. Two-dimensional NMR experiments indicate that binding of magnesium to this DNA duplex does not affect its structure. However, even in the absence of structural changes, magnesium ions specifically affect the exchange properties of imino protons in the four GC/CG base pairs that are located in the interior of the double helix. These specific changes do not result from alterations in the rates of spontaneous opening of these base pairs. Instead, the changes most likely reflect an enhancement in the energetic propensity for spontaneous opening of the GC/CG base pairs that is induced by the binding of magnesium ions.  相似文献   

18.
We present fluorescence studies of quenching behavior in photoaddressable azobenzene-substituted derivatives of the fluorescent conjugated polymer poly(p-phenylenevinylene) (PPV). The azobenzene side chains partially quench the PPV fluorescence, and we have shown previously that the quenching efficiency is greater when the azobenzene side chains are cis than when they are trans. This effect provides a photoaddressable means of modulating the fluorescence intensity of PPV derivatives. To optimize the efficiency of photoinduced intensity modulation, it is important to understand the molecular nature of quenching by both trans- and cis-azobenzene side chains. Here we investigate the photophysical origins of quenching by the two isomers using steady-state and time-resolved fluorescence spectroscopy. We present results from the azobenzene-modified PPV derivative poly(2-methoxy-5-((10-(4-(phenylazo)phenoxy)decyl)oxy)-1,4-phenylenevinylene) (MPA-10-PPV) and two new related polymers, a copolymer lacking half of the azobenzene side chains and an analogue of MPA-10-PPV with a tert-butyl-substituted azobenzene. These studies reveal that steric interactions influence the extent of PPV emission quenching by trans-azobenzene but do not affect the efficient quenching by cis-azobenzene. The difference in dynamic quenching efficiencies between trans- and cis-azobenzene isomers is consistent with fluorescence resonance energy transfer. These results show that it is possible to control the efficiency of photoswitchable fluorescence modulation through specific structural variations designed to encourage or block quenching by trans-azobenzene. This is a promising approach to providing useful general guidelines for designing photomodulated PPV derivatives.  相似文献   

19.
This paper reports the shift in thermal stability of DNA duplex and its thermodynamics spectroscopically, caused by stretching and orientation of DNA strands in a microchannel laminar flow. For direct spectroscopic measurement of the microchannel, we prepared an in-house temperature-controllable microchannel-type flow cell. The melting curves of DNA oligomers in a microchannel laminar flow were measured. For DNA oligomers with more than 10 base pairs, the melting curve shifted to the high-temperature side with higher flow speed. However, for 8-base-pair DNA oligomers, a change in the melting profile was not observed in batchwise and microchannel flows. We undertook microfluidic thermodynamic analysis to elucidate details of the shift in thermal stability of the DNA duplex in a microchannel laminar flow. Enthalpy-entropy compensation is applicable to the microfluidic thermal stability shift. We studied the relationships between the enthalpy-entropy compensation and DNA strand length or flow speed. Results showed that the enthalpy-entropy compensation was influenced by both DNA strand length and flow speed, and the penalties of enthalpy were 2-12% greater than the benefits of entropy.  相似文献   

20.
Heteromorphic hybrid duplex DNA complexes are duplex states, other than perfectly matched duplexes, that can form when single strands comprising several different perfectly matched duplexes are simultaneously present in solution. Such cross-hybridization "side reactions" are of particular nuisance in multiplex reaction schemes, where many strands are designed to hybridize in parallel fashion with only their corresponding perfect complement strand. Relative to the perfect match duplexes, the sequence dependent features of these heteromorphic duplex states and their thermodynamic stability are an important consideration for multiplex hybridization reaction design. We have measured absorbance versus temperature melting curves and performed differential scanning calorimetry measurements on various mixtures of eight different 24 base single strands. When perfect complementary pairs of strands are mixed in single reactions, four perfectly matched duplexes form. When mixtures of strands that are not perfectly matched are prepared and analyzed, melting transitions for cross-hybridization are observed along with significant hyperchromicity changes. This is indicative of a melting hybrid, heteromorphic duplex states formed from two nonperfectly matched strands. In addition, when both the perfectly matched and noncomplementary strands are mixed together (in multiplex hybridization reactions) at molar ratios of 1:1, 3:1, and 1:3, evidence of perfect duplex and heteromorphic duplex complexes is found in all cases. A new analytical tool for considering heterogeneous, duplex complexes in multiplex hybridization mixtures is presented and employed to interpret the acquired melting data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号