首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dutta D  Ramsey JM 《Lab on a chip》2011,11(18):3081-3088
Microchannels in microfluidic devices are frequently chemically modified to introduce specific functional elements or operational modalities. In this work, we describe a miniaturized hydraulic pump created by coating selective channels in a glass microfluidic manifold with a polyelectrolyte multilayer (PEM) that alters the surface charge of the substrate. Pressure-driven flow is generated due to a mismatch in the electroosmotic flow (EOF) rates induced upon the application of an electric field to a tee channel junction that has one arm coated with a positively charged PEM and the other arm left uncoated in its native state. In this design, the channels that generate the hydraulic pressure are interconnected via the third arm of the tee to a field-free analysis channel for performing pressure-driven separations. We have also shown that modifications in the cross-sectional area of the channels in the pumping unit can enhance the hydrodynamic flow through the separation section of the manifold. The integrated device has been demonstrated by separating Coumarin dyes in the field-free analysis channel using open-channel liquid chromatography under pressure-driven flow conditions.  相似文献   

2.
In order to make the lab-on-a-chip concept a reality, it is desirable to have an integrated component capable of pumping fluids through microchannels. We have developed novel, electrically actuated micropumps and have integrated them with microfluidic systems. These devices utilize the build-up of electrolysis gases to achieve pressure-driven pumping, only require small voltages (approximately 10 V), and have approximate dimensions of 5 cm x 3 cm x 2 cm. Furthermore, these micropumps are composed of relatively inexpensive materials, and the reversible sealability of their poly(dimethylsiloxane) body to different microfluidic arrays enables repeated uses of the same pump. Under an applied potential of 10 V, three different micropumps had average flow rates of 8-13 microL min(-1) for water being pumped through five different 2 cm-long, 5500 microm(2) cross-sectional-area channels in poly(methyl methacrylate), in approximate agreement with predicted pump rates. We have also evaluated pump operation at the lower applied potential of 8 V and observed an average flow rate of 6.1 microL min(-1) for a pump-channel system. The current micropump design is capable of sustaining pumping pressures in the range of 300 kPa. The various advantages of these micropumps make them well suited for use in lab-on-a-chip analysis techniques.  相似文献   

3.
Dijkink R  Ohl CD 《Lab on a chip》2008,8(10):1676-1681
Lab-on-a-chip devices are in strong demand as versatile and robust pumping techniques. Here, we present a cavitation based technique, which is able to pump a volume of 4000 microm3 within 75 micros against an estimated pressure head of 3 bar. The single cavitation event is created by focusing a laser pulse in a conventional PDMS microfluidic chip close to the channel opening. High-speed photography at 1 million frames s(-1) resolves the flow in the supply channel, pump channel, and close to the cavity. The elasticity of the material affects the overall fluid flow. Continuous pumping at repetition rates of up to 5 Hz through 6 mm long square channels of 20 microm width is shown. A parameter study reveals the key-parameters for operation: the distance between the laser focus and the channel, the maximum bubble size, and the chamber geometry.  相似文献   

4.
Zhang K  Jian A  Zhang X  Wang Y  Li Z  Tam HY 《Lab on a chip》2011,11(7):1389-1395
We present a unique bubble generation technique in microfluidic chips using continuous-wave laser-induced heat and demonstrate its application by creating micro-valves and micro-pumps. In this work, efficient generation of thermal bubbles of controllable sizes has been achieved using different geometries of chromium pads immersed in various types of fluid. Effective blocking of microfluidic channels (cross-section 500 × 40 μm(2)) and direct pumping of fluid at a flow rate of 7.2-28.8 μl h(-1) with selectable direction have also been demonstrated. A particular advantage of this technique is that it allows the generation of bubbles at almost any location in the microchannel and thus enables microfluidic control at any point of interest. It can be readily integrated into lab-on-a-chip systems to improve functionality.  相似文献   

5.
An extremely simple, power-free pumping method for poly(dimethylsiloxane)(PDMS) microfluidic devices is presented. By exploiting the high gas solubility of PDMS, the energy for the pumping is pre-stored in the degassed bulk PDMS, therefore no additional structures other than channels and reservoirs are required. In a Y-shaped microchannel with cross section of 100 microm width x 25 microm height, this method has provided flow rate of 0.5-2 nL s(-1), corresponding to linear velocity of 0.2-0.8 mm s(-1), with good reproducibility. As an application of the power-free pumping, gold nanoparticle-based DNA analysis, which does not rely on the cross-linking mechanism between nanoparticles, has been implemented in a microchannel with three inlets. Target 15mer DNA has been easily and unambiguously discriminated from its single-base substituted mutant. Instead of colorimetric detection in a conventional microtube, an alternative detection technique suitable for microdevices has been discovered-observation of deposition on the PDMS surfaces. The channel layout enabled two simultaneous DNA analyses at the two interfaces between the three laminar streams.  相似文献   

6.
Studer V  Pepin A  Chen Y  Ajdari A 《The Analyst》2004,129(10):944-949
We have built a dedicated lab on a chip to study the performance of an integrated electrokinetic micropump, driven by a low voltage AC signal. This micropump consists of an array of interdigitated electrodes and is here integrated in a microfluidic loop. We demonstrate that this device can pump continuously and reproducibly electrolyte solutions of low to moderate ionic strength. The pumping speed reaches up to 500 [micro sign]m s(-1) in 20 [micro sign]m deep and 100 [micro sign]m wide channels with a driving signal in the 1-10 kHz range and an amplitude of only a few volts. In addition, we have observed an interesting reversal of the pumping direction at higher frequencies (50-100 kHz). Our device permits a systematic and automated exploration of the influence of the ionic strength thanks to an integrated micromixer.  相似文献   

7.
For electroosmotic pumping, a large direct‐current (DC) electric field (10+ V/cm) is applied across a liquid, typically an aqueous electrolyte. At these high voltages, water undergoes electrolysis to form hydrogen and oxygen, generating bubbles that can block the electrodes, cause pressure fluctuations, and lead to pump failure. The requirement to manage these gases constrains system designs. This article presents an alternative polar liquid for DC electrokinetic pumping, propylene carbonate (PC), which remains free of bubbles up to at least 10 kV/cm. This offers the opportunity to create electrokinetic devices in closed configurations, which we demonstrate with a fully sealed microfluidic hydraulic actuator. Furthermore, the electroosmotic velocity of PC is similar to that of water in PDMS microchannels. Thus, water could be substituted by PC in existing electroosmotic pumps.  相似文献   

8.
We demonstrate a method for generating flow within a microfluidic channel using an optically driven pump. The pump consists of two counter rotating birefringent vaterite particles trapped within a microfluidic channel and driven using optical tweezers. The transfer of spin angular momentum from a circularly polarised laser beam rotates the particles at up to 10 Hz. We show that the pump is able to displace fluid in microchannels, with flow rates of up to 200 microm(3) s(-1) (200 fL s(-1)). The direction of fluid pumping can be reversed by altering the sense of the rotation of the vaterite beads. We also incorporate a novel optical sensing method, based upon an additional probe particle, trapped within separate optical tweezers, enabling us to map the magnitude and direction of fluid flow within the channel. The techniques described in the paper have potential to be extended to drive an integrated lab-on-chip device, where pumping, flow measurement and optical sensing could all be achieved by structuring a single laser beam.  相似文献   

9.
10.
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-microm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined frit-like structure that connects the pumping channel to side reservoirs, where platinum electrodes are located. Current densities up to 4000 A m(-2) could be obtained without noticeable Joule heating in the system. The pump performance was studied as a function of current density and magnetic field intensity, as well as buffer ionic strength and pH. Bead velocities of up to 1 mm s(-1) (0.5 microL min(-1)) were observed in buffered solutions using a 0.4 T NdFeB permanent magnet, at an applied current density of 4000 A m(-2). This pump is intended for transport of electrolyte solutions having a relatively high ionic strength (0.5-1 M) in a DC magnetic field environment. The application of this pump for the study of biological samples in a miniaturized total analysis system (microTAS) with integrated NMR detection is foreseen. In the 7 T NMR environment, a minimum 16-fold increase in volumetric flow rate for a given applied current density is expected.  相似文献   

11.
Rational design and shaping of soft smart materials offer potential applications that cannot be addressed with rigid systems. In particular, electroresponsive elastic materials are well-suited for developing original active devices, such as pumps and actuators. However, applying the electric stimulus requires usually a physical connection between the active part and a power supply. Here we report about the design of an electromechanical system based on conducting polymers, enabling the actuation of a wireless microfluidic pump. Using the electric field-induced asymmetric polarization of miniaturized polypyrrole tubes, it is possible to trigger simultaneously site-specific chemical reactions, leading to shrinking and swelling in aqueous solution without any physical connection to a power source. The complementary electrochemical reactions occurring at the opposite extremities of the tube result in a differential change of its diameter. In turn, this electromechanical deformation allows inducing highly controlled fluid dynamics. The performance of such a remotely triggered electrochemically active soft pump can be fine-tuned by optimizing the wall thickness, length and inner diameter of the material. The efficient and fast actuation of the polymer pump opens up new opportunities for actuators in the field of fluidic or microfluidic devices, such as controlled drug release, artificial organs and bioinspired actuators.

Tubular conducting polymer actuators are used for developing a wireless electropumping device. Bipolar electrochemistry, allowing symmetry breaking in terms of polarization and electrochemical reactions, is the key ingredient for efficient pumping.  相似文献   

12.
We show that it is possible to use single layer soft lithography to create deformable polymer membranes within microfluidic chips for performing a variety of microfluidic operations. Single layer microfluidic chips were designed, fabricated, and characterized to demonstrate pumping, sorting, and mixing. Flow rates as high as 0.39 microl min(-1) were obtained by peristaltic pumping using pneumatically-actuated membrane devices. Sorting was attained via pneumatic actuation of membrane units placed alongside the branch channels. An active mixer was also demonstrated using single-layer deformable membrane units.  相似文献   

13.
Precise and reliable liquid delivery is vital for microfluidic applications. Here, we illustrate the design, fabrication, characterization, and application of a portable, low cost, and robust micropump, which brings solution to stable liquid delivery in microfluidic environment. The pump is designed with three optional speeds of different pumping flow rates, and it can be simply actuated by spring‐driven mechanism. The different flow rates of the pump are realized via passive microvalves in a compact microfluidic chip, which is installed in the pump. Importantly, the membrane structures of the microvalves allow accurate liquid control, and stable flow rates can be achieved via a spring setup. The proposed pump is applied to continuously and stably infuse microbead suspension into an inertial microfluidic chip, and good particle focusing is realized in the spiral channel of the inertial microfluidic chip. The proposed portable, self‐powered, and cost‐efficient pump is crucial for microfluidic lab‐on‐a‐chip system integration, which may facilitate microfluidic application for precise liquid delivery, control, measurement, and analysis.  相似文献   

14.
The achievement of a higher degree of integration of components--especially micropumps and power sources--is a challenge currently being pursued to obtain portable and totally autonomous microfluidic devices. This paper presents the integration of a micro direct methanol fuel cell (μDMFC) in a microfluidic platform as a smart solution to provide both electrical and pumping power to a Lab-on-a-Chip system. In this system the electric power produced by the fuel cell is available to enable most of the functionalites required by the microfluidic chip, while the generated CO(2) from the electrochemical reaction produces a pressure capable of pumping a liquid volume through a microchannel. The control of the fuel cell operating conditions allows regulation of the flow rate of a liquid sample through a microfluidic network. The relation between sample flow rate and the current generated by the fuel cell is practically linear, achieving values in the range of 4-18 μL min(-1) while having an available power between 1-4 mW. This permits adjusting the desired flow rate for a given application by controlling the fuel cell output conditions and foresees a fully autonomous analytical Lab-on-a-Chip in which the same device would provide the electrical power to a detection module and at the same time use the CO(2) pumping action to flow the required analytes through a particular microfluidic design.  相似文献   

15.
AC electrokinetics is a generic term that refers to an induced motion of particles and fluids under nonuniform AC electric fields. The AC electric fields are formed by application of AC voltages to microelectrodes, which can be easily integrated into microfluidic devices by standard microfabrication techniques. Moreover, the magnitude of the motion is large enough to control the mass transfer on the devices. These advantages are attractive for biomolecular analysis on the microfluidic devices, in which the characteristics of small space and microfluidics have been mainly employed. In this review, I describe recent applications of AC electrokinetics in biomolecular analysis on microfluidic devices. The applications include fluid pumping and mixing by AC electrokinetic flow, and manipulation of biomolecules such as DNA and proteins by various AC electrokinetic techniques. Future prospects for highly functional biomolecular analysis on microfluidic devices with the aid of AC electrokinetics are also discussed.  相似文献   

16.
Chien RL  Bousse L 《Electrophoresis》2002,23(12):1862-1869
A general equation to calculate the node pressure at a junction in a microfluidic network is presented. The node pressure is generated from both the hydrodynamic flow due to the external applied hydraulic pressures and the electrokinetic flow resulted from the applied electric field. Pure electroosmotic flow has a plug-flow profile and pressure flow has a parabolic flow profile. In a first order approximation, these two flows can be treated separately, and the total flow is the sum of the two. An externally applied pressure simply creates a constant offset in the node pressure as long as the flow resistances remain the same. In a nonhomogeneous microfluidic network, where the electrical resistivity or the electroosmotic mobility is not constant everywhere, the differences in electroosmotic flow in various sections of the network will create an electroosmotically induced pressure at the internal nodes. Our theoretical approach can easily be extended to networks with more than one internal node. One prediction of this theory is that any variation in electroosmotic mobility or solution resistivity in different network branches will generate a pressure, and can thus be used as a pump. As an example, we demonstrate electroosmotic pumping in a high-low buffer system.  相似文献   

17.
We demonstrate new principles of microfluidic pumping and mixing by electronic components integrated into a microfluidic chip. The miniature diodes embedded into the microchannel walls rectify the voltage induced between their electrodes from an external alternating electric field. The resulting electroosmotic flows, developed in the vicinity of the diode surfaces, were utilized for pumping or mixing of the fluid in the microfluidic channel. The flow velocity of liquid pumped by the diodes facing in the same direction linearly increased with the magnitude of the applied voltage and the pumping direction could be controlled by the pH of the solutions. The transverse flow driven by the localized electroosmotic flux between diodes oriented oppositely on the microchannel was used in microfluidic mixers. The experimental results were interpreted by numerical simulations of the electrohydrodynamic flows. The techniques may be used in novel actively controlled microfluidic-electronic chips.  相似文献   

18.
WH Henley  JM Ramsey 《Electrophoresis》2012,33(17):2718-2724
New instrumentation has been developed to improve the resolution, efficiency, and speed of microfluidic 2D separations using MEKC coupled to high field strength CE. Previously published 2D separation instrumentation [Ramsey, J. D. et al., Anal. Chem. 2003, 75, 3758-3764] from our group was limited to a maximum potential difference of 8.4 kV, resulting in an electric field strength of only approximately 200 V/cm in the first dimension. The circuit described in this report has been designed to couple a higher voltage supply with a rapidly switching, lower voltage supply to utilize the best features of each. Voltages applied in excess of 20 kV lead to high electric field strength separations in both dimensions, increasing the separation resolution, efficiency, and peak capacity while reducing the required analysis time. Detection rates as high as six peptides per second (based on total analysis time) were observed for a model protein tryptic digest separation. Additionally, higher applied voltages used in conjunction with microfluidic chips with longer length channels maintained higher electric field strengths and produced peak capacities of over 4000 for some separations. Total separation time in these longer channel devices was comparable to that obtained in short channels at low field strength; however, resolving power improved approximately threefold.  相似文献   

19.
Park JY  Hwang CM  Lee SH  Lee SH 《Lab on a chip》2007,7(12):1673-1680
This paper describes a method to generate a concentration gradient using an osmosis-driven pump, without the need for bulky peripheral devices, such as an electric syringe pump or a pneumatic pump. By the osmosis, the flow in the microfluidic channel can be controlled even to a very slow speed (nanolitre scale), which enables its application to generate the stable and wide (width = 4 mm) concentration gradient profile, even within a short flow path. A computational simulation was also performed to predict the local distribution of the solute concentration and velocity-pressure profile in the microfluidic chip. The performance of the osmosis-driven pump was evaluated by culturing human mesenchymal stem cells within the concentration gradient of fetal bovine serum. The effects of the gradient on attachment, viability and morphology of the cells were analyzed and quantified. The cell density in a higher serum concentration region was twice greater than that in the pure culture media. The compact, cost-effective, self-powered and osmosis-based gradient generation system can be useful for biomedical and chemical applications.  相似文献   

20.
Two types of low-voltage electroosmosis pumps were developed using microfabrication technology for usage in handy or stand-alone applications of the micrototal analysis systems (micro-TAS) and the lab-on-a-chip. This was done by making a thin (< 1 microm) region in the flow path and by only applying voltages near this thin region using electrodes inserted into the flow path. The inserted electrodes must be free from bubble formation and be gas-tight in order to avoid pressure leakage. For these electrodes, Ag/AgCl or a gel salt bridge was used. For patterning the gel on the chip, a hydrophilic photopolymerization gel and a photolithographic technique were optimized for producing a gel with higher electric conductivity and higher mechanical strength. For high flow rate application, wide (33.2 mm) and thin (400 nm) pumping channels were compacted into a 1 mm x 6 mm area by folding. This pump achieves an 800 Pa static pressure and a flow of 415 nL/min at 10 V. For high-pressure application, a pump was designed with the thin and thick regions in series and positive and negative electrodes were inserted between them alternatively. This pump could increase the pumping pressure without increasing the supply voltage. A pump with 10-stage connections generated a pressure of 25 kPa at 10 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号