首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flow injection system was developed for on-line sorbent extraction preconcentration and flame atomic absorption spectrometric determination of cadmium in natural water samples. The non-charged cadmium complex with diethyl-dithiophosphate (DDPA) was formed on-line in 0.1 mol L−1 HNO3 and retained on the hydrophobic poly-chlorotrifluoroethylene (PCTFE) sorbent material. The adsorbed complex was eluted with isobutyl methylketone (IBMK) and injected directly into the nebulizer via a flow compensation unit. All major chemical and flow parameters affecting the complex formation adsorption and elution as well as interference were studied and optimized. By processing 2.4 mL of sample, the enhancement factor was 39 and the sampling frequency was 50 h−1. For 30 s preconcentration time the detection limit was 0.3 μg L−1 and the relative standard deviation at 5.0 μg L−1 Cd concentration level was 2.9%. The calibration curve was linear in the range 0.8–40.0 μg L−1. The accuracy of the method was estimated by analyzing a certified reference material NIST-CRM 1643d (Trace elements in water). Good recoveries were obtained for spiked natural-water and waste-water samples. Correspondence: Aristidis N. Anthemidis, Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, GR-Thessaloniki 54124, Greece  相似文献   

2.
浊点萃取-火焰原子吸收光谱法测定淡水鱼中痕量铅   总被引:2,自引:0,他引:2  
采用以双硫腙为络合剂、Triton X-100为表面活性剂的新型浊点萃取体系富集淡水鱼中的痕量铅,并用火焰原子吸收光谱法对其进行测定。探讨了溶液pH、表面活性剂浓度、络合剂用量、平衡温度、平衡时间等对浊点萃取及测定灵敏度的影响,优化了实验条件。在最佳条件下测得铅的检出限为0.090μg/L,校准曲线相关系数为0.9999。该方法已用于淡水鱼中痕量铅的测定。  相似文献   

3.
Xiang  Guoqiang  Huang  Yan  Luo  Yifan 《Mikrochimica acta》2009,165(1-2):237-242
Microchimica Acta - Peanut shell was chemically modified with phosphoric acid and used as a solid phase extraction material for the determination of trace amounts of Pb2+ and Cd2+ in food samples...  相似文献   

4.
A new, simple, fast and reliable solid-phase extraction (SPE) method has been developed to separation/preconcentration of trace amounts of silver ion from environmental water samples using dithizone/sodium dodecyl sulfate immobilized on alumina-coated magnetite nanoparticles (DTZ/SDS-ACMNPs) and its determination by flame atomic absorption spectrometry. The coating of alumina on Fe3O4 NPs not only avoids the dissolving of Fe3O4 NPs in acidic solution, but also extends their application without sacrificing their unique magnetization characteristics. This method avoided the time-consuming column-passing process of loading large volume samples in traditional SPE through the rapid isolation of DTZ/SDS-ACMNPs with an adscititious magnet. Optimal experimental conditions including amount of DTZ/SDS, pH value, standing time, sample volume, type, volume and concentration of eluent and co-existing ions have been studied and established. Under the optimal experimental conditions, the detection limit for Ag(I) with enrichment factors of 100 was found to be 0.52?ng?mL?1 and its relative standard deviations (RSD) was 3.4% (n?=?10, C?=?5.0?µg?mL?1). The linear range of calibration curve for Ag(I) was 2–5000?ng?mL?1 with a correlation coefficient of 0.9991. The proposed method was successfully applied to the determination of target analyte in different water and wastewater samples. The validity of the method has been checked by applying it to study the recovery of silver ion in spiked water and wastewater samples.  相似文献   

5.
A coprecipitation method using a combination of 2-mercaptobenzothiazole (MBT) as a chelating reagent and copper as the coprecipitate carrier is described for the determination of trace lead and cadmium by flame atomic absorption spectrometry. The coprecipitation conditions, such as the effect of pH, the amount of carrier element and reagent, standing time, sample volume and matrix effects were examined in detail. It was found that lead and cadmium are coprecipitated quantitatively (≥95%) with Cu(II)-MBT at pH 9 and that the relative standard deviations (n = 7) were ≤1.6%. When using the enrichment factors of 150-fold for lead and cadmium, the detection limits (3s/b) obtained are 1.08 for lead and 0.04 μg L−1 for cadmium. The method was validated with spiked sea water, stream water, well water, and vegetable samples.  相似文献   

6.
A simple and reliable method for the selective extraction and determination of bismuth in water as well as alloy samples using octadecyl bonded silica cartridge modified with cyanex 301 and graphite furnace atomic absorption spectrometry is described. Extraction efficiency and influence of sample matrix, optimum amount of extraction ligand, type and least amount of proper eluent and flow rates were evaluated. The limit of detection of the proposed method is 0.01 ng ml(-1). The influence of potential interfering cations in water samples on the recovery of bismuth was investigated. The method was successfully applied to the extraction and determination of bismuth in natural water and alloy samples.  相似文献   

7.
A cloud point extraction procedure for pre-concentration and determination of cadmium and lead in drinking water using sequential multi-element flame atomic absorption spectrometry is described. 4-(2-thiazolylazo)-orcinol (TAO) has been used as complexing agent and the micellar phase was obtained using the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) and centrifugation. The conditions for reaction and extraction (surfactant concentration, reagent concentration, effect of incubation time, etc) were studied and the analytical characteristics of the method were determined. The method allows the determination of cadmium and lead with quantification limits of 0.30?µg?L?1 and 2.6?µg?L?1, respectively. A precision expressed as relative standard deviation (RSD, n?=?10) of 2.3% and 2.6% has been obtained for cadmium concentrations of 10?µg?L?1 and 30?µg?L?1, respectively, and RSD of 1.3% and 1.7% for lead concentrations of 10?µg?L?1 and 30?µg?L?1, respectively. The accuracy was confirmed by analysis of a natural water certified reference material. The method has been applied for the determination of cadmium and lead in drinking water samples collected in the cities of Ilhéus and Itabuna, Brazil. Recovery tests have also been performed for some samples, and results varied from 96 to 105% for cadmium and 97 to 106% for lead. The cadmium and lead concentrations found in these samples were always lower than the permissible maximum levels stipulated by World Health Organization and the Brazilian Government.  相似文献   

8.
The conditions for cloud point extraction of lead(II) from aqueous solutions were investigated and optimized. The procedure is based on the separation of Pb(II) – brillant cresyl blue (BCB) complexes into the micellar media by adding the surfactant Triton X-114. After phase separation, the surfactant-rich phase was dissolved with 1 mol L−1 HNO3 in ethanol and diluted with 1 mol L−1 HNO3 solution before lead was determined by flame atomic absorption spectrometry. Optimization of the pH, ligand and surfactant quantities, incubation time, temperature, viscosity, sample volume, and interfering ions was performed. The effects of the matrix ions were also examined. The detection limits for three times the standard deviations of the blank for lead were 7.5 μg L−1 for water samples and 0.33 μg g−1 for sediment samples. The validity of cloud point extraction was checked by employing certified reference samples of Lake Sediment IAEA-SL-1 and Sewage Sludge BCR-CRM 144R. The procedure was applied to natural waters and sediment samples with satisfactory results (recoveries >95%, relative standard deviations <6.4%).  相似文献   

9.
In this work, bamboo charcoal (BC) was used as a sorbent for on-line solid phase extraction (SPE) coupling with flame atomic absorption spectrometry (AAS) for trace copper and zinc determination in environmental and biological samples. Under the optimum pH of 5.5 (for Zn) and 7.0 (for Cu), trace copper and zinc were effectively adsorbed on the microcolumn and the retained cations were efficiently eluted with HCl or HNO3 with an appropriate concentration and flow rate for on-line AAS determination. With a sample loading time of 60 s at a sample flow rate of 7.6 mL min?1, the enhancement factors of 39 (for Cu) and 30 (for Zn) and detection limits (3σ) of 0.60 µg L?1 (for Cu) and 0.36 µg L?1 (for Zn), respectively, were achieved. The sample throughput was 45 h?1. At the level of 20 µg L?1of Cu(II) and Zn(II), the precision (RSD, n?=?11) were found to be 0.26% and 1.6%, respectively. The proposed method has been successfully applied to the determination of copper and zinc in environmental and biological samples.  相似文献   

10.
TiO2 nanotubes, a new nanomaterial, are often used in the photocatalysis. Due to its relatively large specific surface areas it should have a higher enrichment capacity. However, very few applications in the enrichment of pollutants were found. This paper described a new procedure to investigate the trapping power of TiO2 nanotubes with cadmium and nickel in water samples as the model analytes and flame atomic absorption spectrometry for the analysis. The possible parameters influencing the enrichment were optimized. Under the optimal SPE conditions, the method detection limits and precisions (R.S.D., n = 6) were 0.25 ng mL−1 and 2.2% for cadmium, 1 ng mL−1 and 2.6% for nickel, respectively. The established method has been successfully applied to analyze four realworld water samples, and satisfactory results were obtained. The spiked recoveries were in the range of 90.2-99.2% for them. All these indicated that TiO2 nanotubes had great potential in environmental field.  相似文献   

11.
合成了新试剂对氨基苯亚甲基硫代若丹宁(ABTR),并用红外光谱、核磁共振氢谱和元素分析鉴定其结构。研究了ABTR与铅的显色反应,在pH3.8的HAc NaAc缓冲介质中,吐温80存在下,ABTR与铅反应生成2∶1稳定络合物,该络合物可被WatersSep PakC18小柱固相萃取,小柱上富集的络合物用乙醇洗脱后富集倍数可达50倍,在乙醇介质中,λmax=545nm,体系摩尔吸光系数ε=1.09×105L·mol-1·cm-1。铅量在0.05~4.0μg/mL内符合比尔定律,本法可用于环境水和食品样品中铅的测定。  相似文献   

12.
H. Parham  N. Rahbar 《Talanta》2009,80(2):664-7942
A new, sensitive, fast and simple method using magnetic iron oxide nanoparticles (MIONs), as an adsorbent has been developed for extraction, preconcentration and determination of traces of fluoride ions. The determination method is based on the discoloration of Fe(III)-SCN complex with extracted fluoride ions which was subsequently monitored spectrophotometrically at λmax = 458 nm. Various parameters affecting the adsorption of fluoride by the MIONs have been investigated, such as pH of the solution, type, volume and concentration of desorbing reagent, amount of adsorbent and interference effects. A linear response for the determination of fluoride was achieved in the concentration range of 0.040-1.250 μg mL−1. The limit of detection (LOD) and limit of quantification (LOQ) for fluoride based on 3 times and 10 times the standard deviation of the blank (3Sb, 10Sb) were 0.015 and 0.042 μg mL−1 (n = 20) for fluoride ion, respectively. A preconcentration factor of 50 was achieved in this method. The proposed procedure has been applied for determination of fluoride concentration in various water samples. The results obtained from this method were successfully compared with those provided by standard SPADNS method.  相似文献   

13.
In this article, a new method that utilizes a diethyldithiocarbamate-modified nanometre TiO2 (TiO2–DDTC) as solid-phase extractant has been developed for simultaneous preconcentration of trace Cu(II), Pb(II), Zn(II), and Cd(II) prior to measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). The separation/preconcentration conditions of analytes, which include the effects of pH, sample flow rate and volume, elution conditions, and interfering ions on the recovery of the analytes, were investigated. At pH 5, the adsorption capacity of modified nanometre TiO2–DDTC was found to be 6.2, 19, 4.7, and 6.0?mg/g for Cu(II), Pb(II), Zn(II), and Cd(II), respectively. According to the definition of IUPAC, the detection limits (3σ) of this method for Cu(II), Pb(II), Zn(II), and Cd(II) were 0.41, 1.7, 0.39, and 0.52?ng/mL, respectively. The proposed method achieved satisfied results when applied to the determinations of trace Cu(II), Pb(II), Zn(II), and Cd(II) in biological and natural water samples.  相似文献   

14.
A coprecipitation technique which does not require complete collection of the precipitate was proposed for the determination of trace lead and cadmium in water with flame atomic absorption spectrometry (FAAS) after preconcentration of lead and cadmium by using cobalt (II) and ammonium pyrrolidine dithiocarbamate (Co-APDC) as coprecipitant and known amount of cobalt as an internal standard. Since lead, cadmium and cobalt were well distributed in the homogeneous precipitate, the concentration ratio of lead to cobalt, and cadmium to cobalt remained unchanged in any part of the precipitate. The amount of lead and cadmium in the original sample solution can be calculated respectively from the ratio of the absorbance values of lead and cadmium to cobalt in the final sample solution that is measured by FAAS and the known amount of the lead and cadmium in the standard series solutions. The optimum pH range for quantitative coprecipitation of lead and cadmium is from 3.0 to 4.5. The 16 diverse ions tested gave no significant interferences in the lead and cadmium determination. Under optimised conditions, lead ranging from 0 to 40?µg and cadmium ranging from 0 to 8?µg were quantitatively coprecipitated with Co-APDC from 100?mL sample solution (pH?~?3.5). This coprecipitation technique coupled with FAAS was applied to the determination of lead and cadmium in water samples with satisfactory results (recoveries in the range of 94.0–108%, relative standard deviations <6.0%).  相似文献   

15.
Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using a column packed with graphene as sorbent was developed for the preconcentration of trace amounts of lead (Pb) using dithizone as chelating reagent prior to its determination by flame atomic absorption spectrometry. Some effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 10.0–600.0 μg L−1 with a detection limit of 0.61 μg L−1. The relative standard deviation for ten replicate measurements of 20.0 and 400.0 μg L−1 of Pb were 3.56 and 3.25%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Pb. The proposed method was successfully applied in the analysis of environmental water and vegetable samples. Good spiked recoveries over the range of 95.3–100.4% were obtained. This work not only proposes a useful method for sample preconcentration, but also reveals the great potential of graphene as an excellent sorbent material in analytical processes.  相似文献   

16.
In this research, magnetic Fe3O4 nanoparticles were synthesised by co-precipitation method and modified with polythiophene (PT) to produce Fe3O4-PT nanoparticles for preconcentration and determination of cadmium (??) ion followed by electrothermal atomic absorption spectrometry. The results of FT-IR spectroscopy, EDX analysis and SEM images show that Fe3O4-PT nanoparticles were synthesised successfully. Different parameters such as sample pH, amounts of adsorbent, sample volume, extraction time, type and concentration of eluent and desorption time were completely investigated and optimum conditions were selected.

Under the optimum conditions, the calibration curve was linear in the range of 0.01–0.25 µg L?1 of cadmium (??). The relative standard deviation was 4.7% (n = 7, 0.10 µg L?1 Cd2+) and limit of detection was 3.30 ng L?1. The accuracy of the proposed method was verified by the analysis of a certified reference material and spike method. Finally, the proposed method was applied for the determination of ultra-trace levels of cadmium (??) in different water and food samples.  相似文献   

17.
Cloud point extraction (CPE) has been used for the simultaneous pre-concentration of cadmium, copper, lead and zinc after the formation of a complex with 1-(2-thiazolylazo)-2-naphthol (TAN), and later analysis by flame atomic absorption spectrometry (FAAS) using octylphenoxypolyethoxyethanol (Triton X-114) as surfactant. The chemical variables affecting the separation phase and the viscosity affecting the detection process were optimized. At pH 8.6, pre-concentration of only 50 ml of sample in the presence of 0.05% Triton X-114 and 2×10−5 mol l−1 TAN permitted the detection of 0.099, 0.27, 1.1 and 0.095 ng ml−1 cadmium, copper, lead and zinc, respectively. The enhancement factors were 57.7, 64.3, 55.6 and 63.7 for cadmium, copper, lead and zinc, respectively. The proposed method has been applied to the determination of cadmium, copper, lead and zinc in water samples and a standard reference material (SRM).  相似文献   

18.
Continuous ultrasound-assisted extraction has been coupled with preconcentration and flame atomic absorption spectrometry for the determination of cadmium and lead in mussel samples. Experimental designs were used for the optimisation of the leaching and preconcentration steps. The use of diluted nitric acid as extractant in the continuous mode at a flow rate of 3.5 ml min−1 and room temperature was sufficient for quantitative extraction of these trace metals. A minicolumn containing a chelating resin (Chelite P, with aminomethylphosphoric acid groups) was proved as an excellent material for the quantitative preconcentration of cadmium and lead prior to their flame atomic absorption detection. A flow injection manifold was used as interface for coupling the three analytical steps, which allowed the automation of the whole analytical process. A good precision of the whole procedure (2.0 and 2.3%), high enrichment factors (20.5 and 11.8) and a detection limit of 0.011 and 0.25 μg g−1 for cadmium and lead, respectively, were obtained for 80 mg of sample. The sample throughputs were ca. 16 and 14 samples h−1 for cadmium and lead, respectively. The accuracy of the analytical procedures was verified by using a standard reference material (BCR 278-R, mussel tissue) and the results were in good agreement with the certified values. The method was successfully applied to the determination of trace amounts of cadmium and lead in mussel samples from the coast of Galicia (NW, Spain).  相似文献   

19.
The potential of modified multiwalled carbon nanotubes (a solid-phase extraction sorbent), for the simultaneous separation and preconcentration of lead, cadmium and nickel; has been investigated. Lead, cadmium and nickel, were adsorbed quantitatively; on modified multiwalled carbon nanotubes (in the pH range of 2–4). Parameters influencing, the simultaneous preconcentration of Pb(II), Ni(II) and Cd(II) ions (such as pH of the sample, sample and eluent flow rate, type and volume of elution solution and interfering ions), have been examined and optimized. Under the optimum experimental conditions, the detection limits of this method. for Pb(II), Ni(II) and Cd(II) ions, were 0.32, 0.17 and 0.04 ng mL−1 in original solution, respectively. Seven replicate determinations, of a mixture of 2.0 μg mL−1 lead and nickel, and 1.0 μg mL−1 cadmium; gave a mean absorbance of 0.074, 0.151 and 0.310, with relative standard deviation 1.7%, 1.5% and 1.2%, respectively. The method has been applied, to the determination of trace amounts of lead, cadmium and nickel; in biological and water samples, with satisfactory results.   相似文献   

20.
A novel flow injection (FI) on-line displacement solid phase extraction preconcentration and/or separation method coupled with FAAS in order to minimize interference from other metals was developed for trace silver determination. The proposed method involved the on-line formation and subsequently pre-sorption of lead diethyldithiocarbamate (Pb-DDTC) into a column packed with PTFE-turnings. The preconcentration and/or separation of the Ag(I) took place through a displacement reaction between Ag(I) and Pb(II) of the pre-sorbed Pb-DDTC. Finally, the retained analyte was eluted with isobutyl methyl ketone (IBMK) and delivered directly to nebulizer for measuring. Interference from co-existing ions with lower DDTC complex stability in comparison with Pb-DDTC, was eliminated without need for any masking reagent. With 120 s of preconcentration time at a sample flow rate of 7.6 mL min−1, an enhancement factor of 110 and a detection limit (3 s) of 0.2 μg L−1 were obtained. The precision (RSD, n = 10) was 3.1% at the 10 μg L−1 level. The developed method was successfully applied to trace silver determination in a variety of environmental water samples and certified reference material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号