首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behaviour of oxazepam in adsorptive stripping voltammetry was studied taking into account those conditions which have an influence on the accumulation step (electrolyte, pH, time, potential, drop size and stirring rate), rest time and stripping step (pulse amplitude and scan rate). Oxazepam can be determined at a hanging mercury drop electrode by differential-pulse voltammetry in 0.008 M Britton-Robinson buffer at pH 2.0 with a ?0.50 V accumulation potential. Its detection limit was found to be 3.6 × 10?10 M (30-s accumulation) and the relative standard deviation for oxazepam concentrations in the range 2.8 × 10?8?4.0 × 10?7 M is lower than 2.8% (80-s accumulation). In addition, a procedure using adsorptive stripping voltammetry was developed to study the interactions occurring between human albumin and the camazepam metabolic series (camazepam, temazepam and oxazepam). The interactions decreased in the order temazepam ? oxazepam ? camazepam and the groups and structural modifications favouring interaction were determined.  相似文献   

2.
The electrochemical oxidation of vinylsulphone azo dye, Reactive Black 5 (RB5), at a glassy carbon electrode has been carried out in phosphate buffer solutions in the pH range 2.85?C11.79 employing cyclic voltammetry (CV) and differential pulse voltammetry (DPV). RB5 showed one well-defined oxidation peak at 0.560 V vs. Ag-AgCl using DPV. The oxidation process was shown to be irreversible over the pH range 2.85?C8.39 and was diffusion controlled. The linear relationship between the peak current height and RB5 concentrations allowed the differential pulse voltammetric determination of the dye over a wide concentration range, from 6.0 × 10?7 to 1.5 × 10?6 M with a detection limit of 4.0 × 10?7 M. The precision and recovery did not exceed 4.9 and 98.2%, respectively. A UV-Vis spectrophotometry method was also proposed for the determination of the RB5 in concentration range from 5.0 × 10?6 M to 1.0 × 10?5 M at ??max = 600 nm with limit of detection of 4.7 × 10?6 M and RSD of 1.8% for RB5 concentration of 1.0 × 10?5 M.  相似文献   

3.
A sensitive electroanalytical method for the determination of anticancer drug etoposide (ETP) using adsorptive stripping differential pulse voltammetry (AdSDPV) at a multi-walled carbon nanotube-modified glassy carbon electrode (MWCNT-modified GCE) is presented. The surface morphology of modified electrode was characterized by scanning electron microscopy. The effects of accumulation time and potential, pH, scan rate, and amount of MWCNT suspension were investigated. The calibration curve was linear in the concentration range of 2.0?×?10?8–2.0?×?10?6 M with the detection limit of 5.4?×?10?9 M. The reproducibility of the peak current was found at 1.55 % (n?=?5) RSD value in pH 6.0 Britton–Robinson buffer for the MWCNT-modified GCE. The method was then successfully utilized for the determination of ETP in pharmaceutical dosage form, and a recovery of 99.55 % was obtained. The possible oxidation mechanism of ETP was also discussed. The proposed electroanalytical method using MWCNT-modified GCE is the most sensitive method for the determination of ETP with lowest limit of detection in the previously published electrochemical methods.  相似文献   

4.
The electrochemical behavior of vardenafil HCl (VRL) at a carbon paste electrode (CPE) was investigated by cyclic voltammetry, and the mechanism of its oxidation was suggested and discussed. A simple Nujol-based CPE in combination with a sensitive square-wave adsorption anodic stripping voltammetry method was described for trace determination of VRL. The described method showed excellent performance for trace determination of VRL in its formulation “Levitra® tablets” without interference from excipients. The results were statistically compared with those obtained with an established HPLC method; nonsignificant differences were found between the described voltammetric and HPLC methods. The described stripping voltammetric method is highly sensitive (limit of detection?=?3?×?10?10?mol?L?1 and limit of quantitation?=?1?×?10?9?mol?L?1). It was successfully applied for the determination of VRL in spiked human serum without the necessity for pretreatment and/or time-consuming extraction steps prior to the analysis.  相似文献   

5.
A DNA-modified carbon paste electrode (DNA-CPIE) was designed by using a mixture of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and paraffin oil as the binder. The electrochemistry of rutin at the DNA-CPIE was investigated by cyclic voltammetry and differential pulse voltammetry. Rutin exhibits a pair of reversible redox peaks in buffer solutions of pH 3.0, and respective electrochemical parameters are established. Under the optimal conditions, the oxidative peak current is linear with the concentration of rutin in the range from 8?×?10?9 to 1?×?10?5 mol L?1, and the detection limit is 1.3?×?10?9 mol L?1 (at S/N?=?3). The electrode exhibits higher sensitivity compared to DNA modified carbon paste electrode without ionic liquid and better selectivity comparing with electrodes without DNA. It also showed good performance, stability, and therefore represents a viable method for the determination of rutin.  相似文献   

6.
A novel, sensitive, simple, fast, and fully validated differential pulse polarographic (DPP) method for the determination of trace amounts of thifensulfuron-methyl in pesticide formulation, soil, and orange juice is reported. This procedure was based on a highly sensitive peak formed due to the reduction of thifensulfuron-methyl on a dropping mercury electrode over the pH range 1.00–10.00 in Britton–Robinson buffer. The polarographic reduction exhibits only a single peak in the pH ranges pH?≥?3.0 and pH?≤?6.0 and pH?=?10.0 located at potential values of ?1.010, ?1.350, and ?1.610?V (vs. SCE), respectively. The single peak appeared as a maximum at pH 3.0 (?1.010?V) was well resolved and suitable to be investigated for analytical use. This peak showed quantitative increments with the additions of standard thifensulfuron-methyl solution under the optimal conditions, and the cathodic peak current was linearity proportional to the thifensulfuron-methyl concentration in the range of 2?×?10?7–5?×?10?5?M. The limit of detection (LOD) and limit of quantification (LOQ) were obtained as 1.05?×?10?7 and 3.50?×?10?7?M, respectively, according to the relation k ?×?SD/b (where k?=?3 for LOD, k?=?10 for LOQ, SD is the standard deviation of the blank, and b is the slope of the calibration curve). The proposed method was applied to pesticide formulation (Harmony® Extra), and the average percentage recovery was in agreement with that obtained by the spectrophotometric comparison method, 97.82 and 102.6%, respectively. The method was extended to determination of thifensulfuron-methy in spiked soil and orange juice, showing a good reproducibility and accuracy with a relative standard deviation of 4.55 and 1.40%, and relative errors of +2.80 and +1.90%, respectively.  相似文献   

7.
《Analytical letters》2012,45(6):977-991
Abstract

The oxidative behavior of pentoxifylline was studied at a glassy carbon electrode in phosphate buffer solutions using cyclic and differential-pulse voltammetry. The oxidation process was shown to be irreversible over the pH range (3.0–9.0) and was diffusion controlled. The possible mechanism of the oxidation of pentoxifylline was investigated by means of cyclic voltammetry and UV-Vis spectroscopy. An analytical method was developed for the determination of pentoxifylline in phosphate buffer solution at pH 3.0 as a supporting electrolyte. The anodic peak current varied linearly with pentoxifylline concentration in the range 2.0 × 10?8 M to 6.0 × 10?7 M of pentoxifylline with a limit of detection (LOD) of 4.42 × 10?10 M. The proposed method was applied to the determination of pentoxifylline in pure and pharmaceutical formulations.  相似文献   

8.
A fast and convenient analytical method is presented for the determination of catechin. The electrochemical response of catechin in pH 6.8 phosphate buffer solution is significantly enhanced by immobilization of a film of poly-aspartic acid on the surface of the glassy carbon electrode. The enhancement mechanism and effect factors such as pH value, accumulation time and scan rate, were explored. Under optimum conditions, the differential pulse voltammetry peak current of catechin is proportional to the concentration in the range from 2.5?×?10?7 to 3.0?×?10?5 molL?1, with the detection limit of 7.2?×?10?8 molL?1. This method was also applied to the determination of catechin in tea beverage samples, and the recoveries were from 97.1% to 102.7%.  相似文献   

9.
In this paper, a silver doped poly(L ‐valine) (Ag‐PLV) modified glassy carbon electrode (GCE) was fabricated through electrochemical immobilization and was used to electrochemically detect uric acid (UA), dopamine (DA) and ascorbic acid (AA) by linear sweep voltammetry. In pH 4.0 PBS, at a scan rate of 100 mV/s, the modified electrode gave three separated oxidation peaks at 591 mV, 399 mV and 161 mV for UA, DA and AA, respectively. The peak potential differences were 238 mV and 192 mV. The electrochemical behaviors of them at the modified electrode were explored in detail with cyclic voltammetry. Under the optimum conditions, the linear ranges were 3.0×10?7 to 1.0×10?5 M for UA, 5.0×10?7 to 1.0×10?5 M for DA and 1.0×10?5 to 1.0×10?3 M for AA, respectively. The method was successfully applied for simultaneous determination of UA, DA and AA in human urine samples.  相似文献   

10.
A modified glassy carbon electrode was prepared as an electrochemical voltammetric sensor based on molecularly imprinted polymer film for tartrazine (TT) detection. The sensitive film was prepared by copolymerization of tartrazine and acrylamide on the carbon nanotube-modified glassy carbon electrode. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. Under the optimum conditions, two dynamic linear ranges of 8?×?10?8 to 1?×?10?6?mol?L?1 and 1?×?10?6 to 1?×?10?5?mol?L?1 were obtained, with a detection limit of 2.74?×?10?8?mol?L?1(S/N?=?3). This sensor was used successfully for tartrazine determination in beverages.  相似文献   

11.
A highly sensitive and selective catalytic adsorptive cathodic striping procedure for the determination of trace germanium is presented. The method is based on adsorptive accumulation of the Ge(IV)‐gallic acid (GA) complex onto a hanging mercury drop electrode, followed by reduction of the adsorbed species. The reduction current is enhanced catalytically by addition of vanadium(IV)‐EDTA. The optimal experimental conditions include the use of 0.03 mol/L HClO4 (pH1.6), 6.0×10?3 mol/L GA, 3.0×10?3 mol/L V(IV), 4.0×10?3 mol/L EDTA, an accumulation potential of ?0.10 V(vs. Ag/AgCl), an accumulation time of 120 s and a differential pulse potential scan mode. The peak current is proportional to the concentration of Ge(IV) over the range of 3.0×10?11 to 1.0×10?8 mol/L and the detection limit is 2×10?11 mol/L for a 120 s adsorption time. The relative standard deviation at 5.0×10?10 mol/L level is 3.1%. No serious interferences were found. The method was applied to the determination of germanium in ore, mineral water and vegetable samples with satisfactory results.  相似文献   

12.
《Electroanalysis》2004,16(24):2051-2057
A conducting polymer was electrochemically prepared on a Pt electrode with newly synthesized 3′‐(4‐formyl‐3‐hydroxy‐1‐phenyl)‐5,2′ : 5′,2″‐terthiophene (FHPT) in a 0.1 M TBAP/CH2Cl2 solution. The polymer‐modified electrode exhibited a response to proton and metal ions, especially Al(III) ions. The poly[FHPT] was characterized with cyclic voltammetry, EQCM, and applied to the analysis of trace levels of Al(III) ions. Experimental parameters affecting the response of the poly[FHPT] were investigated and optimized. Other metal ions in low concentration did not interfere with the analysis of Al(III) ions in a buffer solution at pH 7.4. The response was linear over the concentration range of 5.0×10?8–7.0×10?10 M, and the detection limit was 5.0×10?10 M using the linear sweep voltammetry (LSV). Employing the differential pulse voltammetry (DPV), the response was linear over the 1.0×10?9–5.0×10?11 M range and the detection limit was 3.0×10?11 M. The relative standard deviation at 5.0×10?11 M was 7.2% (n=5) in DPV. This analytical method was successfully verified for the analysis of trace amounts of Al(III) ions in a human urine sample.  相似文献   

13.
A procedure is proposed for the voltammetric determination of selenium as selenosulfate (SO3Se2?) ions at a mercury-film electrode (MFE). Selenosulfate ions are determined in the range from 2 × 10?4 to 1.0 × 10?3 M without analyte accumulation, using peak current at ?0.92 ± 0.02 V and in the range from 1 × 10?7 to 2 × 10?4 M after analyte accumulation with the open circuit, using peak current at ?1.18 ± 0.03 V as the analytical signal. The mechanisms of SO3Se2? reduction at an MFE under the conditions of direct voltammetry and stripping voltammetry with accumulation are proposed and discussed.  相似文献   

14.
A new chemically modified carbon paste electrode is fabricated to determine lead ion concentration in its trace level in aqueous media with differential pulse voltammetry (DPV). The best performance is obtained by the carbon paste electrode composition including 20% of dithiodibezoic acid (DDA), 80% of high purity graphite powder and 60?µL of colloidal gold nanoparticle (AuNP) solution. The proposed electrode has a wide linear calibration response from 1?×?10?9 to 6?×?10?5 M with a detection limit of 6.6?×?10?10?M, at pH 3.5. Seven replicate determination of 5?×?10?8?M of lead ion concentration gives a relative standard deviation of 3.33%. The modified sensor is applied to determine lead contents in some environmental and biological Samples with satisfactory results.  相似文献   

15.
The adsorptive stripping voltammetry of telmisartan was investigated with a hanging mercury drop electrode. This compound produced a catalytic hydrogen wave at ?1.5 V in Britton Robinson buffer of pH 10.38, and the peak current increased with adsorptive accumulation at the electrode. Adsorptive stripping voltammetry with the catalytic hydrogen wave could provide a sensitive novel method for the determination of telmisartan. Various chemical and instrumental parameters affecting the monitored electroanalytical response were investigated and optimized for telmisartan determination. Under these optimized conditions the square-wave adsorptive stripping voltammetric (SW-AdSV) peak current showed a linear dependence on drug concentration over the range 0.05–3.00 μg/mL (1 × 10?7?6 × 10?6 M) (r = 0.999) with accumulation for 120 s at ?1.0 V vs. Ag/AgCl. The proposed electrochemical procedure was successfully applied for the determination of telmisartan in pharmaceutical tablets and human plasma. The results of the developed SW-AdSV method were comparable with those obtained by reported analytical procedures.  相似文献   

16.
《Electroanalysis》2006,18(8):773-778
A sensitive and selective method for the determination of Pb(II) with a zirconium phosphated silica gel (SiZrPH) modified carbon paste electrode has been developed. The measurements were carried out in three steps including an open circuit accumulation following by electrolysis of accumulated Pb(II) at the modified carbon paste electrode and differential pulse voltammetric determination. The analytical performance was evaluated with respect to the carbon paste composition, pH of solution at the accumulation step, pH and concentration of supporting electrolyte, electrolysis potential, accumulation time and electrolysis time. Two linear calibration graphs were obtained in the concentration ranges 2.5×10?9 mol L?1–5.0×10?8 mol L?1 and 5.0×10?8 mol L?1–5.0×10?6 mol L?1 with an accumulation time of 120 s. The detection limit was found to be 3.5×10?10 mol L?1. The effects of potential interfering ions were studied, and it was found that the proposed procedure is free from interferences of common interfering ions such as tin, thallium and etc. The developed method was applied to Pb(II) determination in a wastewater sample.  相似文献   

17.
A novel and simple method is proposed for the determination of tetracycline by adsorptive voltammetry in a droplet using a carbon nanotube paste rotating disk electrode (CNTP-RDE). An enhanced electrochemical oxidation response of tetracycline was observed in pH 8.2 supporting electrolyte by the addition of a long-chain cationic surfactant, such as benzyldimethyltetradecylammonium chloride (zephiramine). Under the optimized experimental conditions, the calibration curve was linear across a tetracycline concentration range from 1.0?×?10?7 to 2.0?×?10?6 M. The limit of detection and sensitivity were 4.0?×?10?8 M and 0.9358?A M?1, respectively. This method was successfully employed for the determination of tetracycline in milk samples.  相似文献   

18.
A highly sensitive electrochemical biosensor for the detection of trace amounts of 8‐azaguanine has been designed. Double stranded (ds)DNA molecules are immobilized onto a glassy carbon electrode surface with Langmuir–Blodgett technique. The adsorptive voltammetric behaviors of 8‐azaguanine at DNA‐modified electrode were explored by means of cyclic voltammetry and square wave voltammetry. Compared with bare glassy carbon electrode (GCE), the Langmuir–Blodgett film modified electrode can greatly improve the measuring sensitivity of 8‐azaguanine. Under the optimum experimental conditions, the Langmuir–Blodgett film modified electrode in pH 3.0 Britton–Robinson buffer solutions shows a linear voltammetric response in the range of 5.0×10?8 to 1.0×10?5 mol L?1 with detection limit 9.0×10?9 mol L?1. The method proposed was applied successfully for the determination of 8‐azaguanine in diluted human urine with wonderful satisfactory.  相似文献   

19.
The determination of Pb and Cd with a Nafion‐modified glassy carbon electrode and Cu‐DPABA complex (Cu‐DPABA–NA/GCE; DPABA is methyl 3,5‐bis{bis‐[(pyridin‐2‐yl)methyl]amino}methyl‐benzoate) as an alternative electrode for anodic stripping voltammetry was described. Pb and Cd were accumulated in acetate buffer pH 4 at a potential of ?1.4 V (vs. Ag/AgCl electrode) for 120 s followed by a DPASV scan from ?1.2 to ?0.2 V. Under optimum conditions the calibration curves were linear in the range of 4.8×10?9–5.0×10?5 and 5.0×10?9–5×10?5 mol L?1 for Pb and Cd, respectively. Detection limits were 1.8×10?9 and 1.2×10?9 mol L?1 for Pb and Cd, respectively. Different parameters and conditions, such as membrane ingredients, accumulation time, potential and pH value were optimized. A study of interfering substances was also performed. A significant increase in current was achieved at the modified electrode in comparison with the bare glassy carbon electrode. The validation of the proposed method was made by Pb and Cd determination in the certified reference material Groundwater CRM 610 (BCR, Community Bureau of Reference, Brussels, Belgium). The electrode was successfully applied for determination of Pb and Cd in river water with a high content of organic contaminants without any pretreatment.  相似文献   

20.
The voltammetric behavior of uric acid (UA) was studied at a carbon-ceramic electrode modified with multi walled carbon nanotubes; which was developed via a simple procedure. UA can be effectively oxidized at the surface of the electrode and produced an anodic peak at about 0.29 V in pH 6.8 phosphate buffer solutions. The experimental parameters such as pH, accumulation time, and amount of multi walled carbon nanotubes were optimized for determination of UA. Under the optimum conditions, the anodic peak current in differential pulse voltammetry is linear to the UA concentration over the range from 2.5×10?7M to 1.0×10?4 M with a correlation coefficient of 0.998. The electrode exhibited good stability and could be easily regenerated. The relative standard deviation of the peak current obtained for a 5.0?×?10?5 M UA solution was 1.0%. The influence of dopamine and ascorbic acid on the anodic peak current of UA was examined. This method was successfully applied for the determination of uric acid in human urine sample, and the recovery was 99.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号