首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzyl(4-methoxyphenyl)dithiophosphinic acid (HL) was obtained as solid and was treated with the NiCl26H2O, CoCl26H2O, ZnCl2, and CdCl2 to prepare its Ni(II), Co(II), Zn(II), and Cd(II) complexes. The nickel complex was further treated with pyridine which led to the formation of octahedral dipyridine derivative. HL was obtained through the addition reaction of the perthiophosphonic acid anhydride Lawesson reagent, (LR), [2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide], with the corresponding Grignard compound (benzylmagnesium bromide) in diethyl ether medium.

The complexes were all of the stoichiometry of [M(L)2]x, with x = 1 for M = Ni2+ and x = 2 for M = Co2+, Cd2+ and Zn2+. The coordination geometry was square planar in the nickel(II) complex and tetrahedral in the others. Similar to many other nickel(II) complexes, the Ni(L)2 reacts reversibly with pyridine to yield the octahedral complex ({(Py)2Ni(L)2}).

The compounds were characterized by elemental analysis; MS, FTIR, and Raman spectroscopies. The magnetic susceptibilities of the complexes were measured to confirm the hybridization patterns and the geometries. Single-crystal X-ray analyses of Ni(L)2 and [Co(L)2]2 complexes were also carried out to prove the molecular topologies.  相似文献   

2.
《Analytical letters》2012,45(14):1283-1291
Abstract

Donnan dialysis of cations into simple receiver electrolytes such as NaNO3 is inhibited by interaction between the fixed sulfonate exchange sites on the cation exchange membrane and the test cations. Application of a 5 V cm?1 (peak-to-peak) sine wave at 1 MHz across the membrane diminishes the retardation and allows the Donnan dialysis rate to approach the diffusion limit with Cd, Cu, and Zn test metals and a 0.1 M NaNO3 receiver. The transport to Pb is still retarded by about 25%. The use of 0.2 M Mg(II), 0.5 mM Al(III) receiver results in diffusion limited transport for all metals.  相似文献   

3.
Colorless single crystals of Cd[AlCl4]2 grow from the melt of CdCl2 and AlCl3 upon slow cooling from 250°C. The crystal structure [monoclinic, P1a1, Z = 2, a = 1288.7(2), b = 660.2(1), c = 705.1(1) pm, β = 92.89(1)º] may be derived from hexagonally closest packed layers of Cl?. Octahedral and tetrahedral holes are filled with Cd2+ and Al3+ in a 1:2 ratio between all layers stacked in the [104] direction. Cd[GaCl4]2 and Cd[AlBr4]2 are isotypic. Reduction of Cd[AlCl4]2 with excess cadmium shot and slow cooling from 350°C yields plate-like very moisture-sensitive, colorless single crystals of Cd2[AlCl4]2. The crystal structure [triclinic, C1 , Z = 2, a = 655.47(3), b = 1135.26(1), c = 935.23(6) pm, α = 89.70(2)º, β = 103.61(1)º, γ = 90.455(1)º] is built from slabs stacked in the [100] direction consisting of ethane-like [Cd2Cl6] units with a Cd? Cd distance of 256.1 pm sharing common vertices with [AlCl4] tetrahedra.  相似文献   

4.
The new ligand 2-(2-(2-hydroxyethylamino)ethylamino)cyclohexanol, (HEAC), was prepared under microwave conditions through ring opening of cyclohexene oxide with 2-(2-amino-ethylamino)ethanol. Its cadmium(II) complexes [Cd2(HEAC)2(μ-Cl)2Cl2] (1) and [Cd(HEAC)2][CdI4] (2) were identified by elemental analysis, FT-IR, Raman, 1H NMR spectroscopies, and single-crystal X-ray diffraction. HEAC formed 1?:?1 M?:?L complexes with cadmium chloride and cadmium iodide. Complex 1 crystallized as a dimer with two asymmetrically bound bridging Cl? and a terminally coordinated Cl? on each metal. The geometry around the cadmiums in 1 with four five-membered chelate rings and four Cl? ligands is distorted octahedral for each Cd(II). The cyclohexanol OH of each ligand forms intramolecular hydrogen bonds. In 2, the coordination numbers for cadmium in [Cd(HEAC)2]2+ and [CdI4]2? moieties are six and four, respectively. In [Cd(HEAC)2]2+ each ligand coordinates through two N- and one O-donors, leading to a distorted octahedral geometry. The geometry of [CdI4]2? in 2 is slightly distorted tetrahedral. The protonation equilibrium constants of the two secondary amino groups in HEAC, determined by pH-potentiometry, were 6.26 and 9.26, respectively, at 25°C. Stability constants for this ligand with Ni(II), Cu(II), and Zn(II) (1?:?1 M?:?L), determined by glass-electrode potentiometry, were 7.13, 10.50, and 5.42, respectively.  相似文献   

5.
The kinetics of the bromate oxidation of tris(1,10-phenanthroline)iron(II) (Fe(phen)32+) and aquoiron(II) (Fe2+ (aq)) have been studied in aqueous sulfuric acid solutions at μ = 1.0M and with Fe(II) complexes in great excess. The rate laws for both reactions generally can be described as -d [Fe(II)]/6dt = d[Br?]/dt = k[Fe(II)] [BrO?3] for [H+]0 = 0.428–1.00M. For [BrO?3]0 = 1.00 × 10?4M. [Fe2+]0 = (0.724–1.45)x 10?2 M, and [H+]0 = 1.00M, k = 3.34 ± 0.37 M?1s?1 at 25°. For [BrO?3]0 = (1.00–1.50) × 10?4M, [Fe2+]0 = 7.24 × 10?3M ([phen]0 = 0.0353M), and [H+]0 = 1.00M, k = (4.40 ± 0.16) × 10?2 M?1s?1 at 25°. Kinetic results suggest that the BrO?3-Fe2+ reaction proceeds by an inner-sphere mechanism while the BrO?3-Fe(phen)32+ reaction by a dissociative mechanism. The implication of these results for the bromate-gallic acid and other bromate oscillators is also presented.  相似文献   

6.
New complexes containing the 1,4‐bis(pyridazin‐4‐yl)benzene ligand, namely diaquatetrakis[1,4‐bis(pyridazin‐4‐yl)benzene‐κN2]cadmium(II) hexaiodidodicadmate(II), [Cd(C14H10N4)4(H2O)2][Cd2I6], (I), and poly[[μ‐1,4‐bis(pyridazin‐4‐yl)benzene‐κ2N2:N2′]bis(μ‐thiocyanato‐κ2N:S)cadmium(II)], [Cd(NCS)2(C14H10N4)]n, (II), demonstrate the adaptability of the coordination geometries towards the demands of slipped π–π stacking interactions between the extended organic ligands. In (I), the discrete cationic [Cd—N = 2.408 (3) and 2.413 (3) Å] and anionic [Cd—I = 2.709 (2)–3.1201 (14) Å] entities are situated across centres of inversion. The cations associate via complementary O—H...N2′ hydrogen bonding [O...N = 2.748 (4) and 2.765 (4) Å] and extensive triple π–π stacking interactions between pairs of pyridazine and phenylene rings [centroid–centroid distances (CCD) = 3.782 (4)–4.286 (3) Å] to yield two‐dimensional square nets. The [Cd2I6]2− anions reside in channels generated by packing of successive nets. In (II), the CdII cation lies on a centre of inversion and the ligand is situated across a centre of inversion. A two‐dimensional coordination array is formed by crosslinking of linear [Cd(μ‐NCS)2]n chains [Cd—N = 2.3004 (14) Å and Cd—S = 2.7804 (5) Å] with N2:N2′‐bidentate organic bridges [Cd—N = 2.3893 (12) Å], which generate π–π stacks by double‐slipped interactions between phenylene and pyridazine rings [CCD = 3.721 (2) Å].  相似文献   

7.
The concentration dissociation constants of nitrilotriacetic acid and the concentration stability constants of Cd(II) complexes with the nitrilotriacetic acid anion in water-ethanol mixtures and of Cu(II) and Cd(II) complexes with o-phenanthroline and 2,2′-bipyridine in micellar solutions of sodium dodecyl sulfate were determined potentiometrically. Based on the concentration constants determined, Cd2+ and Cu2+ buffer solutions were developed for calibration of a Cd2+-selective electrode in water-ethanol mixtures and Cd2+ and Cu2+-selective electrodes in micellar solutions of sodium dodecyl sulfate within the ranges pCu 9.7–13.5 and pCd 7.5–11.8.__________Translated from Zhurnal Prikladnoi Khimii, Vol. 78, No. 2, 2005, pp. 273–278.Original Russian Text Copyright © 2005 by Chernysheva, Loginova, Bazilyanskaya.  相似文献   

8.
Complexation processes that occur between cadmium(II) hexacyanoferrate(II) (Cd2[Fe(CN)6]) and 3d-metal ions M(II) (M = Mn, Co, Ni, Cu, Zn) in thin gelatin layers with the immobilized cadmium(II) hexacyanoferrates when brought in contact with aqueous solutions of d-metal chlorides are studied. Cd2+ ions were found to be replaced to some extent by M2+ ions of the indicated d metals (except for Mn(II)) and form binuclear (dd)-metal hexacyanoferrates(II). A complete replacement of Cd(II) and formation of M2[Fe(CN)6] was observed in none of the cases.  相似文献   

9.
Cu(II) complexes of poly-2-vinylpyridine (P2VP) and poly-2-methyl-5-vinylpyridine (P2M5VP), partially quaternized by dimethylsulphate, and of the analogues (2-methyl-5-ethylpyridine, 2-ethylpyridine) were studied by EPR spectroscopy in a mixture of methanol and water. Peculiarities of the complex formation reaction were observed for the polymers compared to the analogues. At ratios of [Py]:[Cu2+] > 40, the predominant formation of tetrapyridinate-Cu(II) species [(CuL4)]2+ was found for P2M5VP. However, differences were found between the parameters of EPR-spectra for the [CuL4]2+ in the polymer from that of the [Cu(2M5EPy)4]2+. It was suggested that, in the polymer, [CuL4]2+ complexes with structure intermediate between square planar and tetrahedral are formed. Moreover, the maximum value of the pyridine fraction forming [CuL4]2+ in P2M5VP was found to be about 10% and it is appreciably less the value of the fraction in P4VP (about 40%). For P2VP at [Py]:[Cu2+] > 40, an insignificant amount of [CuL1]2+ and [CuL2]2+ are formed in the solution. It follows that the main chain position relative to the ligand nitrogen atom in these polyvinylpyridines affects profoundly the complexation between the macromolecules and Cu(II) ions. The steric hindrances due to the chain are likely to change the [CuL4]2+ structure and to prevent complex formation for P2VP.  相似文献   

10.
The crystalline compounds [{CdI2(dmso)}n] ( 1 ,) and [Cd2I4(dmso)4] ( 2 ,) provide a structural sequence illustrating the conversion of CdI2 into the ionic derivatives [Cd(dmso)6]2+ [Cd(dmso)I3]2? · EtOH ( 3 ,) and [Cd(dmso)6]2+ CdI42? ( 4 ,), with increasing proportions of dmso. ( 1 ,) comprises polymeric chains with Cd centres linked by bridging iodide atoms, and alternately in four- and six-coordination. ( 2 ,) is a binuclear segment of the chains and can be seen as the structural forerunner of the ionic compounds ( 3 ,) and ( 4 ,). The ion packing in ( 3 ,) is loose, with lattice ethanol.  相似文献   

11.
Five solvates, [CdBr2(DMF)] n , [CdBr2(DMA)] n , [CdI2(DMF)] n , [Cd(DMF)6][Cd2I6], and {[Cd(DMA)6][Cd5I12] n } m , were isolated from the ternary systems CdX2–L–H2O (X = Br, I; L = N,N-dimethylacetamide, N,N-dimethylformamide) and characterized by the X-ray single crystal analysis. The structures of the first three solvates is similar to each other in structures and represent a one-dimensional polymer chain, the fourth solvate has the discrete structure containing [Cd(DMF)6]2+ and [Cd2I6]2– ions, and the fifth solvate contains discrete [Cd(DMA)6]2+ cations and the polymer anionic fragment [Cd5I12] n 2n.  相似文献   

12.
The reactions of Cd(NO3)2·4H2O with NH4SCN and 2,4‐dpa (2,4‐dpa = 2,4‐dipyridineamine) in CH3OH afforded the one‐dimensional coordination polymer [Cd(NCS)2(2,4‐dpa)2]n, 1 , while reaction of Cd(NO3)2·4H2O with NH4SCN and PmPa (PmPa = 2‐(1‐piperazinyl)pyrimidine) in CH3OH gave complex of the type [Cd(NCS)2(PmPa)2]n, 2. Each of the 2,4‐dpa ligand in complex 1 is coordinated to the Cd2+ metal center through pyridyl nitrogen atoms to form the one‐dimensional chain structures. The distorted {CdN4S2} octahedral coordination geometry around Cd2+ center is completed by pairs of bidentate thiocyanato ligands. Complex 2 has the 1‐D arrangement constructed through one‐dimensional double μ(N,S) end‐to‐end bridging thiocyanato groups bridged Cd(II) chains interconnected through PmPa ligands.  相似文献   

13.
To survey the influence of aza‐aromatic co‐ligands on the structure of Cadmium(II) sulfonates, three Cd(II) complexes with mixed‐ligand, [CdII(ANS)2(phen)2] ( 1 ), [CdII(ANS)2(2,2′‐bipy)2] ( 2 ) and [CdII(ANS)2(4,4′‐bipy)2]n ( 3 ) (ANS = 2‐aminonaphthalene‐1‐sulfonate; phen = 1,10‐phenanthroline; 2,2′‐bipy = 2,2′‐bipyridine; 4,4′‐bipy = 4,4′‐bipyridine) were synthesized by hydrothermal methods and structurally characterized by elemental analyses, IR spectra, and single crystal X‐ray diffraction. Of the three complexes, ANS consistently coordinates to Cd2+ ion as a monodentate ligand. While phen in 1 and 2,2′‐bipy in 2 act as N,N‐bidentate chelating ligands, leading to the formation of a discrete mononuclear unit; 4,4′‐bipy in 3 bridges two CdII atoms in bis‐monodentate fashion to produce a 2‐D layered network, suggesting that the conjugate skeleton and the binding site of the co‐ligands have a moderate effect on molecular structure, crystal stacking pattern, and intramolecular weak interactions. In addition, the three complexes exhibit similar luminescent emissions originate from the transitions between the energy levels of sulfonate anions.  相似文献   

14.
Summary Flow injection analysis (FIA) has been combined with a dialysis unit in order to study the effect of interferences in the determination of free cyanide in waste water. Two kinds of interferences, metals and inorganic anions, were studied. In all the cases, solutions of constant cyanide concentration containing interferences were introduced in the FIA system and free cyanide was determined after hydrogen cyanide passes the dialysis membrane.Results reveal the advantages of this methodology for Zn(II), Cu(I), Cd(II), Nr 4 + and inorganic anions. Fe(III), Co(II), Ni(II) and carbonate show different behaviour under these conditions.
Entfernung von Störungen bei der spektralphotometrischen Cyanidbestimmung unter Verwendung von Dialyse und Fließinjektion

Presented at Euroanalysis VI, Paris, September 8–11, 1987  相似文献   

15.
The novel complex [Cu(men)2][Cu2Cd2Cl2(CN)6] (I) was isolated from the aqueous-ethanol system containing CuCl2, men (men = N-methylethane-1,2-diamine) and K2[Cd(CN)4] in the presence of dilute hydrochloric acid and chemically and spectroscopically characterised. The crystal structure of I consists of [Cu 2 I (CN)6] and [Cd2Cl2(CN)6] building units bridged by cyanide ligands and forms a three-dimensional skeleton with cavities. [Cu(men)2]2+ cations in which two men ligands are chelated (mean Cu-N is 2.033(6) Å) are located in the cavities. The coordination polyhedron around the Cu(II) atoms is formed as a tetragonal bipyramidal by two weaker axial Cu-Cl bonds (2.8642(12) Å) with chlorido ligands from the skeleton. The Cu(I) and Cd(II) atoms in the skeleton exhibit tetra-(CuC4 chromophore) and penta-coordination (CdN3Cl2), respectively. The temperature-dependent susceptibility measurements indicate a Curie-Weiss-like behaviour and the presence of weak anti-ferromagnetic interaction.  相似文献   

16.
Following our interest in binary element–nitrogen compounds we report here on the synthesis and comprehensive characterization (M.p., IR/Raman, elemental analysis, 14N/133Cd/199Hg NMR) of tri‐ and tetraazido cadmate and mercurate anions [E(N3)(2+n)]n? (E=Cd, Hg; n=1, 2) in a series of [Ph4P]+ and [PNP]+ ([PNP]+=bis(triphenylphosphine)iminium) salts. The azide/chloride exchange in CH2Cl2 as well as the formation of tetrazolate salts in CH3CN solutions of the polyazido mercurates were investigated. Single crystal X‐ray structures of all new compounds, and for comparison [Ph4P][Cd2(N3)5(H2O)], were determined. Moreover, the synthesis of anhydrous cadmium(II) azide and its DMSO adduct is presented for the first time. For a better understanding of structure and bonding in E(N3)2, [E(N3)3]? and [E(N3)4]2?, theoretical calculations at the M06‐2X/aug‐cc‐pVDZ level were carried out.  相似文献   

17.
In poly[di‐μ‐chlorido‐μ‐(4,4′‐bipyridazine)‐κ2N1:N1′‐cadmium(II)], [CdCl2(C8H6N4)]n, (I), and its isomorphous bromide analogue, [CdBr2(C8H6N4)]n, (II), the halide atom lies on a mirror plane and the CdII ion resides at the intersection of two perpendicular mirror planes with m2m site symmetry. The pyridazine rings of the ligand lie in a mirror plane and are related to each other by a second mirror plane perpendicular to the first. The compounds adopt the characteristic structure of the [MIIX2(bipy)] type (bipy is bipyridine) based on crosslinking of [Cd(μ‐X)2]n chains [Cd—Cl = 2.5955 (9) and 2.6688 (9) Å; Cd—Br = 2.7089 (4) and 2.8041 (3) Å] by bitopic rod‐like organic ligands [Cd—N = 2.368 (3)–2.380 (3) Å]. This feature is discussed in terms of supramolecular stabilization, implying that the periodicity of the inorganic chain [Cd...Cd = 3.7802 (4) Å in (I) and 3.9432 (3) Å in (II)] is favourable for extensive parallel π–π stacking of monodentate pyridazine rings, with centroid–centroid distances of 3.7751 (4) Å in (I) and 3.9359 (4) Å in (II). This is not the case for the longer iodide bridges, which cannot stabilize such a pattern. In poly[tetra‐μ‐iodido‐μ4‐(4,4′‐bipyridazine)‐κ4N1:N2:N1′:N2′‐dicadmium(II)], [Cd2I4(C8H6N4)]n, (III), the ligands are situated across a centre of inversion; they are tetradentate [Cd—N = 2.488 (2) and 2.516 (2) Å] and link successive [Cd(μ‐I)2]n chains [Cd—I = 2.8816 (3)–3.0069 (4) Å] into corrugated layers.  相似文献   

18.
The reactions of complex formation of Cu(II), Co(II), Zn(II), Ni(II), and Cd(II) acetates with 3,3′,4,4′5,5′-hexamethyl-2,2′-dipyrrolylmethene (HL) in DMF were studied by the electronic spectroscopy and calorimetric titration methods at 298.15 K. The main products of the above reactions are [ML2] chelates. In the case of Cu and Ni salts, the process occurs through the spectrally recorded stage of formation of the heteroligand [ML(AcO)] complexes. The reaction with Cd acetate terminates at the stage of the heteroligand complex formation due to the large radius and decreasing electron affinity of the Cd2+ ion. The effect of the metal nature appears in the increasing thermodynamic stability of single-type complexes in the series [ML2]: Ni(II) < Zn(II) < Co(II) < Cu(II) and [ML(AcO)]: Cd(II) < Ni(II) < Cu(II).  相似文献   

19.
Six new coordination polymers constructed from two structurally related ligands, 2,2′-bis(2-methylbenzimidazole) ether (L1) and 2,2′-bis(2-ethylbenzimidazole)ether (L2), have been synthesized. They are [Cu(L1)(bz)2] (1), [Cu(L2)(bz)2] (2), [Zn2(L1)(m-bdc)2] (3), [Cd2(L2)(m-bdc)2(H2O)]2·H2O (4), [Zn(L1)(OH-bdc)-(H2O)] (5) and [Zn2(L2)(btca)] (6), where Hbz = benzoic acid, m-H2bdc = 1,3-benzenedicarboxylic acid, OH-H2bdc = 5-hydroxyisophthalic acid, and H4btca = 1,2,4,5-benzenetetracarboxylic acid. In 1 and 2, the bidentate N-donor ligands (L1 and L2) bridge neighboring metal centers to form 1D single chains. The bz anions are attached on both sides of the chains. In 3 and 4, the N-donor ligands (L1 and L2) in cis conformations bridge two metal centers to generate a [M2(L1)]4+ unit (M = Zn(II) and Cd(II)). The adjacent [M2(L1)]4+ units are further linked via the dicarboxylate anions to form 1D double chain structures. In 5, the Zn(II) cations are bridged by OH-m-bdc anions to form an infinite polymeric chain. The L1 ligands are attached on one side of the chain in a monodentate mode. In 6, two Zn(II) cations are bridged by two L2 ligands to form a [ZnL2]2 4+ ring, which is further linked by btca anions to generate a 2D layer. The luminescent properties of the ligands and 3–6 in the solid state at room temperature were also studied.  相似文献   

20.
Cd2Cu(PO4)2     
During an investigation of the insufficiently known system M1O–M2O–X2O5–H2O (M1 = Cd2+, Sr2+ and Ba2+; M2 = Cu2+, Ni2+, Co2+, Zn2+ and Mg2+; X = P5+, As5+ and V5+), single crystals of the novel compound dicadmium copper(II) bis[phosphate(V)], Cd2Cu(PO4)2, were obtained. This compound belongs to a small group of compounds adopting a Cu3(PO4)2‐type structure and having the general formula M12M2(XO4)2 (M1/M2 = Cd2+, Cu2+, Mg2+ and Zn2+; X = As5+, P5+ and V5+). The crystal structure is characterized by the interconnection of infinite [Cu(PO4)2]n chains and [Cd2O10]n double chains, both extending along the a axis. Exceptional characteristics of this structure are its novel chemical composition and the occurrence of double chains of CdO6 polyhedra that were not found in related structures. In contrast to the isomorphous compounds, where the M1 cations are coordinated by five O atoms, the Cd atom is coordinated by six. The dissimilarity in the geometry of M1 coordination between Cd2Cu(PO4)2 and the isomorphous compounds is mostly due to the larger ionic radius of the Cd cation in comparison with the Cu, Mg and Zn cations. Sharing a common edge, two CdO6 polyhedra form Cd2O10 dimers. Each such dimer is bonded to another dimer sharing common vertices, forming [Cd2O10]n double chains in the [100] direction. The Cu atoms, located on an inversion centre (site symmetry ), form isolated CuO4 squares interconnected by PO4 tetrahedra, forming [Cu(PO4)2]n chains similar to those found in related structures. Conversely, the [Cd2O10]n double chains, which were not found in related structures, are an exclusive feature of this structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号