首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(3):531-542
Microwave-assisted extraction of sixteen polycyclic aromatic hydrocarbons and their gas chromatographic mass spectrometric detection are presented herein. An efficient extraction was achieved in 15 minutes using 10 mL of 1:1 n-hexane-acetone while a clean-up step was developed studying the elution curves on solid phase extraction silica cartridges. The analytical method was optimized and validated using a certified reference marine sediment; satisfactory figures of merit were obtained with limits of detection in the range 0.001–0.004 µg/g, precision within 6%, and good linearity (regression coefficients generally higher than 0.998, in the concentration range 0.010–1.000 µg/mL). The developed method was successfully applied to the determination of polycyclic aromatic hydrocarbons in real marine sediments collected in two coastal areas of Italy exposed to different anthropic impact: three tourist sites of Liguria and the Venetian Lagoon. The total concentration of the analytes in the samples was in the range 1.027–3.827 µg/g and the use of common markers suggested their probable pyrolytic origin.  相似文献   

2.
Several analytical methods were optimised for the analysis of 29 per- and polyfluoroalkyl substances (PFASs), including perfluorocarboxylic acids, perfluoroalkyl sulphonic acids and fluorotelomers (FTs), such as sulphonate, saturated carboxylic acid, unsaturated carboxylic acid, sulphonamide and sulphonamide betaine (FTAB), in environmental samples in order to assess pollution by PFASs around heavily contaminated sites. Non-filtered water samples were extracted, purified and pre-concentrated by a solid-phase extraction (SPE) procedure. Solid samples (sediments, soils and sludges) were extracted through solvent extraction under acidic conditions and thereafter purified and pre-concentrated using the same SPE procedure as for the water samples. An ultra-high performance liquid chromatography coupled to tandem mass spectrometry in negative electrospray ionisation mode was employed to separate and detect targeted compounds. Twelve labelled internal standards were used to provide an adequate correction compensating for matrix effects. The limits of quantification (LOQs) were between 4 and 10 ng/L in water depending on the analytes. For solid samples, the LOQs were 2 ng/g dry weight (dw) in sediments and soils, and 20 ng/g dw in sludges for all analytes. A surrogate parameter method based on the carboxylation of perfluoroalkyl acid precursors under basic pH conditions was furthermore implemented to estimate the occurrence of non-targeted PFAS compounds. In order to evaluate the reliability of these analytical methods, environmental samples collected around a training area in France, where aqueous fire-fighting foam is used, were analysed. Of all the compounds detected in these environmental samples, 6:2 FTAB was found in the highest concentrations.  相似文献   

3.
A method for the determination of organotin compounds (monobutyl = MBT, dibutyl = DBT, and tributyltin = TBT) in marine sediments by headspace Solid Phase Microextraction (SPME) has been developed. The analytical procedure involved 1) extraction of TBT, DBT and MBT from sediments with HCl and methanol mixture, 2) in situ derivatization with sodium tetraethylborate and 3) headspace SPME extraction using a fiber coated with poly(dimethylsiloxane). The derivatized organotin compounds were desorbed into the splitless injector and simultaneously analyzed by gas chromatography – mass spectrometry. The analytical method was optimized with respect to derivatization reaction and extraction conditions. The detection limits obtained for MBT, DBT and TBT ranged from 730 to 969 pg/g as Sn dry weight. Linear calibration curves were obtained for all analytes in the range of 30–1000 ng/L as Sn. Analysis of a standard reference sediment (CRM 462) demonstrates the suitability of this method for the determination of butyltin compounds in marine sediments. The application to the determination of TBT, DBT and MBT in a coastal marine sediment is shown.  相似文献   

4.
This study describes a simple and sensitive method for determining the alkylphenolic compounds, 4-tert-octylphenol (4-t-OP), 4-nonylphenol isomers (4-NPs), and their monoethoxylates (4-t-OP1EO and 4-NP1EOs), in fresh fruits and vegetables. The method involves extracting a sample by a modified Nielson-Kryger steam distillation extraction using n-hexane for 1 h. The alkylphenolic compounds were identified and quantitated by gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode. Various pH values and amounts of NaCl added to the sample solution were evaluated as extraction conditions. The quantitation limit of this method was less than 0.2 ng/g in 10 g (fresh weight) of sample. Recovery of alkylphenolic compounds in spiked samples exceeded 64% while R.S.D. ranged from 1.0 to 9.8%. Alkylphenolic residues were detected in fresh fruits and vegetables at concentrations of 4-NPs and 4-t-OP from n.d. to 16 ng/g and from n.d. to 4.8 ng/g (fresh weight), respectively. NP1EO and OP1EO were always below the quantitation limit.  相似文献   

5.
A Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) method has been adapted and validated for the simultaneous determination of priority (16 PAHs, 12 PCBs and 7 organochlorine pesticides (OCPs)) and emerging (carbamazepine, 9 musks and 6 sunscreens) pollutants in sediments by Gas Chromatography-Mass Spectrometry (GC-MS). The sample preparation was adapted by modifying the nature of the extraction solvent and optimising clean-up and evaporation steps. The method was validated by the analysis of spiked estuarine and marine sediments. Analytical performances were evaluated in terms of linearity, accuracy, precision and detection limits. The method shows good linearity (coefficients of determination > 0.998) and repeatability (RSD < 10%). Obtained recoveries are acceptable, ranging from 62% to 131% for all the compounds. Detection limits are estimated to range from 0.01 ng/g to 3.18 ng/g. This developed method offers the ability to detect and quantify several priority and emerging pollutants at low concentration levels in sediments.  相似文献   

6.
In this study, tributyltin (TBT) was extracted from marine sediment matrix with the use of pressurised solvent extraction (PSE), which uses high-temperature and -pressure conditions to increase extraction efficiency. The analyte was chromatographically resolved using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system with a pentafluorophenyl (PFP) column and a methanol/aqueous formic acid mobile phase gradient, and was detected by MS/MS as product fragments after collisionally induced dissociation (CID) of the cationic parent molecule. This study represents the first application of PSE extraction combined with LC-MS/MS analysis for the determination of TBT in sediments. The method has been validated according to the International Organisation for Standardisation (ISO) 17025:2001 and affords automated extraction of sediment samples with high-sensitivity analysis. The full method limit of detection was established as 1.25 ng Sn g?1 with an instrument detection limit of 0.01 ng Sn g?1. The chromatographic procedure may also be applied for the direct analysis of water matrices without the need for sample manipulation, and therefore represents a combined analytical approach for the monitoring of TBT contamination in marine or estuarine ecosystems.  相似文献   

7.
In this study, a highly sensitive and robust method using an ultra-high-performance liquid chromatography-tandem mass spectrometry combined with solid-phase extraction and ultrasonic extraction for pretreatment and silica gel purification steps has been developed for determination of 21 natural and synthetic progestagens in river surface water and sediments, and influents, effluents, and sludge from municipal wastewater treatment plants, and flush water and feces from swine farms. For the various matrices considered, the optimized method showed satisfactory performance with recoveries of 70–129 % (except AD, 5α-DHP, DPT, HPC), the limits of quantification below 2.30 ng/L for liquid samples and 2.59 ng/g for solid samples (except AD), and good linearity and reproducibility. This developed method was successfully applied in the analysis of progestagens in environmental samples from Liuxi Reservoir, Xintang municipal wastewater treatment plant, and Shunfeng swine farm in South China. Six analytes were detected at trace levels in surface water, effluent, and sediment samples. Seven analytes (0.7 (HPA)–35.1 ng/L (DGT)) were found in the influent samples and three analytes (5.6 (DGT)–11.8 ng/g (5α-DHP)) in the dewatered sludge samples. Moreover, 13 analytes were detected in swine farm, with high concentrations ranging from 23.8 ng/L (ET) to 5,024 ng/L (P) in flush water, and from 20.0 ng/g (MPA) to 1952 ng/g (P) in feces.  相似文献   

8.
LC-MS/MS methods for the quantification of morphine, morphine-3-glucuronide, morphine-6-glucuronide, codeine, 6-acetylmorphine, cocaine, benzoylecgonine, ecgonine methyl ester, hydroxybenzoylecgonine, cocaethylene, amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), methadone, and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine in human placenta and umbilical cord were developed and validated. Specimens (1?±?0.02 g) were homogenized with the Ultra-Turrax T8 disperser and centrifuged, and the supernatant was submitted to solid-phase extraction with Oasis MCX cartridges. Chromatographic separation was performed using an Atlantis T3 analytical column (100?×?2.1 mm, 3 μm) and a gradient of 0.1 % formic acid and acetonitrile. Selectivity was verified in 10 different blank specimens. The method was linear from 1–5 to 100–500 ng/g, depending on the analyte. Limits of detection and quantification ranged from 0.5 to 2.5 ng/g and 1 to 5 ng/g, respectively. Method imprecision was ≤15.3 %, except for MDMA at low quality control (18.1 %); accuracy, 87.1 to 114 %; extraction efficiency, 16.3 to 154.0 % (%CV?=?1.8-39.4 %); matrix effect, ?75.7 to 449.9 % (%CV?=?3.5–50 %); and process efficiency, 8.7 to 316.0 %. The method was applied to authentic placenta and umbilical cord specimens from drug-user pregnant women.  相似文献   

9.
Two analytical procedures based on the generation of volatile tributyltin derivatives, their separation by headspace solid-phase microextraction (HS SPME) and subsequent determination using plasma optical emission spectrometry (OES) have been developed for the selective determination of trace tributyltin (TBT) in the presence of other butyltins and inorganic tin in sediments without the use of chromatography. A microwave-assisted leaching of tin compounds from the sediment using 25%v/v acetic acid is applied for sample pretreatment. The first method takes advantage of TBT chloride releasing from the lecheate after adding 3 M hydrochloric acid, and subsequent separation of the analyte by HS SPME using Carboxen-poly(dimethylsiloxane) (CAR/PDMS). The second method involves the use of masking agents, namely ethylenediaminetetraacetic acid (EDTA) and diphenylcarbazone (DFC), which form stable chelates with monobutyltin (MBT) and dibutyltin (DBT), respectively, followed by the ethylation of tributyltin at pH 5 using sodium tetraethylborate (NaBEt4) solution. The final concentration of NaBEt4 is 0.05%w/v. The parameters affecting the TBT derivatisation and separation by HS SPME have been optimised including the selection of SPME fibre coating (PDMS, CAR/PDMS), the amount of masking agents and NaBEt4 added, sorption time (2–40 min) and sorption temperature (25–60°C). Higher sensitivity and robustness are attained with the method involving ethylation derivatisation, leading to the limit of detection (LOD) of 3 ng L?1. The selective release of TBT is observed from aqueous solutions, where the concentrations of MBT and DBT were in 2–50-fold excess to TBT. The SPME-TD-MIP-OES methods have been validated against several certified reference materials (CRMs), including SOPH-1 marine sediment, PACS-2 marine sediment and BCR 646 freshwater sediment.  相似文献   

10.
Several methods for analyzing pesticides in honey have been developed. However, they do not always reach the sufficiently low limits of quantification (LOQ) needed to quantify pesticides toxic to honey bees at low doses. To properly evaluate the toxicity of pesticides, LOQ have to reach at least 1 ng/g. In this context, we developed extraction and analytical methods for the simultaneous detection of 22 relevant insecticides belonging to three chemical families (neonicotinoids, pyrethroids, and pyrazoles) in honey. The insecticides were extracted with the QuEChERS method that consists in an extraction and a purification with mixtures of salts adapted to the matrix and the substances to be extracted. Analyses were performed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS) for the pyrazoles and the pyrethroids and by high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) for the neonicotinoids and ethiprole. Calibration curves were built from various honey types fortified at different concentrations. Linear responses were obtained between 0.2 and 5 ng/g. Limits of detection (LOD) ranged between 0.07 and 0.2 ng/g, and LOQ ranged between 0.2 and 0.5 ng/g. The mean extraction yields ranged between 63 % and 139 % with RSD <25 %. A complete validation of the methods also examined recovery rates and specificity. These methods were applied to 90 honey samples collected during a 2009–2010 field study in two apiaries placed in different anthropic contexts.
Figure
During their foraging activity, honey bees harvest nectar or pollen that can be contaminated with pesticides used in agriculture  相似文献   

11.
The aim of the study was to determine whether using chemical and radiochemical analysis of lake sediments can highlight changes in the climate. Also it was studied whether human impact on the environment can be observed and to what extent such changes are in agreement with historical data. Samples of 16 cm thick sediment cores from the Smreczynski Staw Lake were collected and divided into 1 cm thick sub-samples. The samples were air dried and homogenized. The quantitative analysis of Fe, Mn, Zn, Cr, Cu, Ni, Cd, and Pb in the digested sediment samples was made by using atomic absorption spectrometry. Simultaneously, the radioactivity of 137Cs using gamma spectrometry and 210Pbuns using alpha spectrometry, were measured for sediment layer dating. Results showed that iron concentration was in the range 0.3–over 1 % (w/w), and zinc 0.01–0.05 % (w/w). Lesser concentrations were found for copper 18.37–43.6 ppm, manganese 37.5–50.7 ppm, lead 146.1–432 ppm, chromium 12.3–37.4 ppm, nickel 3.1–10.8 ppm and cadmium 0.9–34.6 ppm. Changes in 137Cs radioactivity was in the range of 89 ± 11 to 865 ± 62 (Bq kg?1). Sediments composition can accurately reflect (in terms of time and to what extent) air pollution and natural geo-chemical processes in the environment. However, the choice of the analysed object is crucial in this respect. The Smreczynski Staw Lake, due to its location in the mountains and hydrological situation, proved to be very useful for providing undisturbed analytical samples.  相似文献   

12.
A simple and novel analytical method for quantifying persistent organic pollutants (POPs) in marine sediments has been developed using microwave assisted solvent extraction (MASE) and liquid-phase microextraction (LPME) using hollow fibre membrane (HFM). POPs studied included twelve organochlorine pesticides (OCP) and eight polychlorinated biphenyl (PCB) congeners. MASE was used for the extraction of POPs from 1 g of sediment using 10 ml of ultrapure water at 600 W for 20 min at 80 degrees C. The extract was subsequently subjected to a single step LPME-HFM cleanup and enrichment procedure. Recovery varied between 73 and 111% for OCPs; and 86-110% for PCBs, and exceeded levels achieved for conventional multi-step Soxhlet extraction coupled with solid-phase extraction. The method detection limit for each POP analyte ranged from 0.07 to 0.70 ng g(-1), and peak areas were proportional to analyte concentrations in the range of 5-500 ng g(-1). Relative standard deviations of less than 20% was obtained, based on triplicate sample analysis. The optimized technique was successfully applied to POP analysis of marine sediments collected from the northeastern and southwestern areas of Singapore's coastal environment.  相似文献   

13.

A screening method for polycyclic aromatic hydrocarbons (PAHs) determination in sediment using headspace solid phase microextraction (HS-SPME) with gas chromatography–flame ionization detection was developed. In order to obtain the convenient experimental conditions for HS-SPME extraction an experimental design with two steps was done. 0.2 g of sediment and 85 µm polyacrylate fibre, 80 °C and 120 min were the chosen extractions conditions. The limit of detection (LOD) was from 0.8 ng g−1 (fluoranthene) to 8 ng g−1 (chrysene). The relative standard deviation (RSD) was less than 7.0%. Determination of PAHs in NRC–CNRC–HS–3B reference marine sediment showed good agreement with the certified values. The method was applied in the analysis of ten river and estuary surface sediments from Gipuzkoa (North Spain). PAHs total concentration ranged from 400 to 5,500 ng g−1.

  相似文献   

14.
Dispersive liquid–liquid microextraction (DLLME) in conjunction with high-performance liquid chromatography-diode array detection (HPLC-DAD) has been applied to the extraction and determination of EDTA in sediments and water samples. The effect of extraction, nature and volume of disperser solvent, pH value of sample solution, extraction time and extraction temperature were investigated. Under the optimal conditions the analytical range of EDTA was from 3.0 to 50.0 μg L?1 with a correlation coefficient of 0.9982 and a detection limit of 1.7 μg L?1. The relative standard deviation (RSD) was less than 5.4% (n?=?5), and the recovery values were in the range of 89–95%. The simplicity, high enrichment, high recovery and good repeatability are the main advantages of the method presented. The DLLME-HPLC-DAD method was successfully applied to the analysis of EDTA in aqueous samples.  相似文献   

15.
A method for the determination of organotin compounds (monobutyl = MBT, dibutyl = DBT, and tributyltin = TBT) in marine sediments by headspace Solid Phase Microextraction (SPME) has been developed. The analytical procedure involved 1) extraction of TBT, DBT and MBT from sediments with HCl and methanol mixture, 2) in situ derivatization with sodium tetraethylborate and 3) headspace SPME extraction using a fiber coated with poly(dimethylsiloxane). The derivatized organotin compounds were desorbed into the splitless injector and simultaneously analyzed by gas chromatography - mass spectrometry. The analytical method was optimized with respect to derivatization reaction and extraction conditions. The detection limits obtained for MBT, DBT and TBT ranged from 730 to 969 pg/g as Sn dry weight. Linear calibration curves were obtained for all analytes in the range of 30-1000 ng/L as Sn. Analysis of a standard reference sediment (CRM 462) demonstrates the suitability of this method for the determination of butyltin compounds in marine sediments. The application to the determination of TBT, DBT and MBT in a coastal marine sediment is shown.  相似文献   

16.
A sensitive and rapid method based on alcoholic-assisted dispersive liquid–liquid microextraction followed by high-performance liquid chromatography for determination of citalopram in human plasma and urine samples was developed. The effects of six parameters (extraction time, stirring speed, pH, volume of extraction and disperser solvents, and ionic strength) on the extraction recovery were investigated and optimized utilizing Plackett–Burman design and Box–Behnken design, respectively. According to Plackett–Burman design results, the volume of disperser solvent, stirring speed, and extraction time had no effect on the recovery of citalopram. The optimized condition was a mixture of 172 µL of 1-octanol as extraction solvent and 400 µL of methanol as disperser solvent, pH of 10.3 and 1% w/v of salt in the sample solution. Replicating the experiment in optimized condition for five times, gave the average extraction recoveries equal to 89.42%. The detection limit of citalopram in human plasma was obtained 4 ng/mL, and the linearity was in the range of 10–1200 ng/mL. The corresponding values for human urine were 5.4 ng/mL with the linearity in the range of 10–2000 ng/mL. Relative standard deviations for inter- and intraday extraction of citalopram were less than 7% for five measurements. The proposed method was successfully implemented for the determination of citalopram in human plasma and urine samples.  相似文献   

17.
A novel, simple and rapid method, termed dispersive liquid–liquid microextraction with solidification of floating organic drop coupled to high performance liquid chromatography, was developed for analysis of three phenolic oestrogens including diethylstilbestrol, dienestrol and hexestrol in human urine and water samples. The parameters of dispersive liquid–liquid microextraction with solidification of floating organic drop procedure including sample pH, type and volume of disperser solvent, and type and volume of extraction solvent were optimised. High performance liquid chromatography was applied for the phenolic oestrogens’ analysis. Under the optimum extraction and detection conditions, excellent analytical performances were attained. Good linear relationships (r ≥ 0.998) between peak area and concentration for diethylstilbestrol and dienestrol were optimised from 0.1 to 20 µg/mL, for hexestrol from 2 to 50 µg/mL. Method detection limits of 28.6–666.7 ng/mL were achieved. Satisfactory relative recoveries ranging from 72% to 122% were determined for urine, lake and tap water samples, with relative standard deviations (RSDs, n = 6) of 1.5–9.8%. The developed dispersive liquid–liquid microextraction with solidification of floating organic drop-high performance liquid chromatography method has a great potential in routine residual analysis of trace phenolic oestrogens in biological and water samples.  相似文献   

18.
《Analytical letters》2012,45(7):1290-1300
A method for determination of polychlorinated biphenyls (PCBs) in environmental and biological materials has been developed. This method includes rapid chromatography requiring less than 10 min using an HT-8 capillary column at 30 m × 0.25 mm i.d. Rapid chromatography was performed using a column temperature gradient from 80 to 310°C at a rate of 40°C/min. Low-resolution mass spectrometry in single ion monitoring mode of simultaneous detection of 12 target ions is suggested for detection of PCBs peaks. The method not only enabled us to reduce time of analysis but also to increase the efficiency of separating PCB peaks from interferences and to reduce levels of detection of analytes resulting in a minimized sample preparation stage. The last includes extraction of the PCBs using organic solvents, preliminary alkaline hydrolysis in the case of biological objects, and cleaning up the extracts on compact cartridges. The method was tested in monitoring studies for these contaminants in soils, sediments, snow cover, fish tissues, and seal blubber. Total PCBs and isomer congener groups of the same chlorination degree and seven indicator congeners (IUPAC No.'s 28, 52, 101, 118, 138, 153, and 180) are determined with a high degree of certainty. The PCB concentrations were in the range of 1–700 ng/g dry weight for environmental samples and 500–25000 ng/g lipids for biota. The method yields measurements of total PCBs and isomer groups with a precision no greater than 10% and no greater than 15% for the indicator congeners.  相似文献   

19.
In this study, the development of a new sensitive method for the analysis of alpha-dicarbonyls glyoxal (G) and methylglyoxal (MG) in environmental ice and snow is presented. Stir bar sorptive extraction with in situ derivatization and liquid desorption (SBSE-LD) was used for sample extraction, enrichment, and derivatization. Measurements were carried out using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As part of the method development, SBSE-LD parameters such as extraction time, derivatization reagent, desorption time and solvent, and the effect of NaCl addition on the SBSE efficiency as well as measurement parameters of HPLC-ESI-MS/MS were evaluated. Calibration was performed in the range of 1–60 ng/mL using spiked ultrapure water samples, thus incorporating the complete SBSE and derivatization process. 4-Fluorobenzaldehyde was applied as internal standard. Inter-batch precision was <12 % RSD. Recoveries were determined by means of spiked snow samples and were 78.9?±?5.6 % for G and 82.7?±?7.5 % for MG, respectively. Instrumental detection limits of 0.242 and 0.213 ng/mL for G and MG were achieved using the multiple reaction monitoring mode. Relative detection limits referred to a sample volume of 15 mL were 0.016 ng/mL for G and 0.014 ng/mL for MG. The optimized method was applied for the analysis of snow samples from Mount Hohenpeissenberg (close to the Meteorological Observatory Hohenpeissenberg, Germany) and samples from an ice core from Upper Grenzgletscher (Monte Rosa massif, Switzerland). Resulting concentrations were 0.085–16.3 ng/mL for G and 0.126–3.6 ng/mL for MG. Concentrations of G and MG in snow were 1–2 orders of magnitude higher than in ice core samples. The described method represents a simple, green, and sensitive analytical approach to measure G and MG in aqueous environmental samples.  相似文献   

20.
The graphene oxide (GO) and the magnesium–aluminium bimetallic hydroxides composite (GO/Mg-Al-LDH) was used as a solid-phase extractant for determination of toluene, ethylbenzene, p-xylene, m-xylene, o-xylene, 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene in wastewater by gas chromatography-mass spectrometry analytical method. When the amount of solid-phase extractant was 1.5 g, the extraction time was 6 min, and the elution with 2 mL of chloroform for 3 min, seven monoaromatic hydrocarbons (MAHCs) in 500 mL of water sample can be well extracted and separated. Under the optimised experimental conditions, the mass concentration of each component in the range of 0.01–5 ng/mL has a good linear relationship with the peak area, the coefficients of determination are all greater than 0.995. The relative standard deviation (n = 5) and the method detection limit range are 2.9–7.1% and 0.0005–0.005 ng/mL, respectively. The seven of MAHCs in Dongfengqu River and laboratory wastewater of Chengdu University of Technology can be effectively detected, the recovery rate and the relative standard deviation (n = 5) are 83.0–110.0% and 3.7–9.4%, respectively. For the first time, the GO/Mg-Al-LDH composite was used as a solid-phase extraction material, and seven MAHCs in water were successfully determined by GC-MS. The detection method is established with low detection limit and high reproducibility which can meet the measurement requirements of trace MAHCs in wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号