首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Antimony(V) determination at an unmodified edge plane pyrolytic graphite (EPPG) electrode using anodic stripping voltammetry (ASV) by depositing beyond the hydrogen wave is shown in this paper. By depositing beyond the hydrogen wave, we report a sensitive method to determine pentavalent antimony at a carbon electrode in 0.25 M HCl. Using differential pulse anodic stripping voltammetry (DPASV), a bare EPPG electrode gave a detection limit of 5.8±0.02 nM without the need for surface modification. This level is greatly within the EU limit for drinking water of 40 nM.  相似文献   

2.
Three different commercial carbon nanomaterial-modified screen-printed electrodes based on graphene, carbon nanotubes and carbon nanofibers were pioneeringly tested as electrode platforms for the plating with Sb film. They were microscopically and analytically compared to each other and to the most conventional unmodified carbon screen-printed electrode (SPCE). The obtained detection and quantification limits suggest that the in-situ antimony film electrode prepared from carbon nanofibers modified screen-printed electrode (SbSPCE-CNF) produces a better analytical performance as compared to the classical SPCE modified with antimony for Pb(II) and Cd(II) determination, approving its appropriateness for measuring low μg L−1 levels of the considered metals. In-situ SbSPCE-CNF was successfully used for the simultaneous determination of Pb(II) and Cd(II) ions, by means of differential pulse anodic stripping voltammetry, in a certified reference estuarine water sample with a very high reproducibility and good trueness.  相似文献   

3.
The voltammetric performance of glassy carbon (GC) and edge‐plane pyrolytic graphite (EPPG) electrodes was investigated for the oxidation of potassium ferrocyanide in aqueous solution both with and without the addition of surfactant (sodium dodecyl sulfate and Triton X‐100). The heterogeneous electron transfer kinetics were determined for all cases, and it was found that the GC electrode surface was far more sensitive to the presence of surfactant than the more hydrophilic EPPG surface. This result was then applied to the electroanalysis of copper via adsorptive stripping voltammetry in the presence of Triton X‐100 and it was observed that the EPPG electrode response was unaffected by up to 100 μM of surfactant, whilst the voltammetry on the GC electrode was significantly affected by only 10 μM.  相似文献   

4.
The direct electrochemical oxidation of sodium sulfide has been examined at five different carbon-based electrode substrates (glassy carbon (GC), boron-doped diamond (BDD), edge-plane pyrollytic graphite (EPPG), basal-plane pyrollytic graphite (BPPG) and carbon nanotubes (CNT)). An electrocatalytic response is observed at both the EPPG and CNT electrode compared to that of the other three substrates. The higher capacitative charging currents obtained at the CNT electrode hinder its detection range and, as such, the EPPG electrode has been clearly shown to be the substrate of choice for the direct electrochemical detection of sulfide. The procedure was applied to the recovery of a sulfide spike in river water, with a recovery of 104%.  相似文献   

5.
We report the simultaneous electroanalytical determination of Pb2+ and Cd2+ by linear sweep anodic stripping voltammetry (LSASV) using an antimony nanoparticle modified boron doped diamond (Sb‐BDD) electrode. Sb deposition was performed in situ with the analytes, from a solution of 1 mg L?1 SbCl3 in 0.1 M HCl (pH 1). Pb2+ inhibited the detection of Cd2+ during simultaneous additions at the bare BDD electrode, whereas in the presence of antimony, both peaks were readily discernable and quantifiable over the linear range 50–500 μg L?1.  相似文献   

6.
In this work, the electrochemical behavior of ferrocene (Fc) was investigated by cyclic voltammetry (CV) in room temperature ionic liquids (RTILs) of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) on glass carbon (GC), edge plane pyrolytic graphite (EPPG) and multi‐walled carbon nanotube (MWCNTs)‐modified EPPG electrodes, respectively. The results demonstrated that on GC electrode, pairs of well‐defined reversible peaks were observed, while for the electrode of EPPG, the peak potential separation (ΔEp) is obviously larger than the theoretical value of 59 mV, hinting that the electrode of EPPG is distinguished from the commonly used electrode, consistent with the previous proposition that EPPG has many “defects”. To obtain an improved electrochemical response, multi‐walled carbon nanotubes (MWCNTs) were modified on the electrode of EPPG; the increased peak current and promoted peak potential separation not only proved the existence of “defects” in MWCNTs, but also supported that “creating active points” on an electrode is the main contribution of MWCNTs. Initiating the electrochemical research of Fc on the MWCNTs‐modified EPPG electrode in RTILs and verifying the presence of “defects” on both EPPG and MWCNTs using cyclic voltammograms (CVs) of Fc obtained in RTILs of EMIBF4, is the main contribution of this preliminary work.  相似文献   

7.
Here we investigate the use of 3D printed graphene/poly(lactic acid) (PLA) electrodes for quantifying trace amounts of Hg, Pb, and Cd. We prepared cylindrical electrodes by sealing a 600 μm diameter graphene/PLA filament in a pipette tip filled with epoxy. We characterized the electrodes using scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry in ferrocene methanol. The physical characterization showed a significant amount of disorder in the carbon structure and the electrochemical characterization showed quasi‐reversible behavior without any electrode pretreatment. We then used unmodified graphene/PLA electrode to quantify Hg, and Pb and Cd in 0.01 M HCl and 0.1 M acetate buffer using square wave anodic stripping voltammetry. We were able to quantify Hg with a limit of detection (LOD) of 6.1 nM (1.2 ppb), but Pb and Cd did not present measurable peaks at concentrations below ~400 nM. We improved the LODs for Pb and Cd by depositing Bi microparticles on the graphene/PLA and, after optimization, achieved clear stripping peaks at the 20 nM level for both ions (4.1 and 2.2 ppb for Pb2+ and Cd2+, respectively). The results obtained for all three metals allowed quantification below the US Environmental Protection Agency action limits in drinking water.  相似文献   

8.
We have developed a sensor for the square wave anodic stripping voltammetric determination of Pb(II). A glassy carbon electrode was modified with a thin film of an antimony/poly(p-aminobenzene sulfonic acid) composite in air-saturated aqueous solution of pH 2.0. Compared to a conventional antimony film electrode, the new one yields a larger stripping signal for Pb(II). The conditions of polymerization, the concentration of Sb(III), the pH value of the sample solution, the deposition potential and time, frequency, potential amplitude, and step increment potential were optimized. Under the optimum conditions, a linear response was observed for Pb(II) in the range of 0.5 to 150.0 μg?L?1. The detection limit for Pb(II) is 0.1 μg?L?1.
Figure
The surface of a glassy carbon electrode (GCE) was modified by electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and the modified electrode was then prepared by in situ depositing antimony and target metal on the poly(p-ABSA) coated glassy carbon electrode. The antimony/poly(p-ABSA) film electrode displays high electrochemical activity in giving a peak current that is proportional to the concentration of Pb(II) in a certain range.  相似文献   

9.
New procedures of potentiometric stripping analysis can be based on the use of antimony film electrodes and antimony(III) salts. In this paper, antimony films are generated onto carbon paste electrodes in situ and after electrolytic preconcentration of the metals to be determined, the excess antimony(III) serves as a chemical oxidant. Moreover in acidic solutions containing halide ions, the oxidation ability of antimony(III) is adequately limited because of formation of its corresponding halide complexes. Compared with similar total substitution of traditionally used mercury(II) by bismuth(III), the use of antimony(III) offers higher sensitivity in detection of heavy metals, namely, cadmium and lead.  相似文献   

10.
Anodic stripping voltammetry combined with sequential injection analysis (ASV‐SIA) was selected to examine the use of bismuth‐ and antimony‐film plated glassy carbon electrodes under comparable conditions for the determination of Pb(II) and Cd(II) ions. Of interest were the conditions for film deposition, as well as the composition of sample/carrier solutions, including concentrations of Sb(III) or Bi(III) and HCl. Then, by the optimized procedure, one could determine Pb(II), Cd(II), and Zn(II) ions at the low µg L?1 level and ASV‐SIA configuration with both electrodes tested on analysis of a water sample.  相似文献   

11.
《Electroanalysis》2017,29(4):1069-1080
In this study, we introduce a very sensitive and selective method for the differential pulse anodic stripping determination of Sb(III) ion on the over‐oxidized poly(phenol red) modified glassy carbon electrode (PPhRedox/GCE) in 0.1 mol L‐1 HCl medium. The formation of both poly(phenol red) and over‐oxidized poly(phenol red) film on the electrode surfaces were characterized by electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy and scanning electron microscopy techniques. An anodic stripping peak of Sb(III) was observed at 0.015 V on the PPhRedox/GCE. Higher anodic stripping peak current of Sb(III) was obtained at PPhRedox/GCE compared with both bare GCE and poly(phenol red) film modified GCE (PPhRed/GCE). The calibration graph consisted of two linear segments of 0.044 ‐ 1.218 μg L−1 and 3.40 – 18.26 μg L−1 with a detection limit of 0.0075 μg L−1. The proposed over‐oxidized polymer film modified electrode was applied successfully for the analysis of antimony in different spiked water samples. Spiked recoveries for water samples were obtained in the range of 93.0–103.0%. The accuracy of the method was also verified through the analysis of standard reference materials (SCP SCIENCE‐EnviroMAT™ EP−L‐2).  相似文献   

12.
A simple and sensitive differential pulse stripping voltammetric method was developed for the determination of antimony(III) using a selenium-doped carbon paste electrode modified with an ionic liquid, graphene, and gold nanoparticles. The conditions, including the mass of graphene, concentration of hydrochloric acid, deposition potential, and deposition time were optimized by single-factor experiments. Under the optimal conditions, a linear equation of ISb(III) (µA)?=??16.9882???11.0929 c (µmol/L) (R?=?0.9965) and a detection limit of 2.7?×?10?8?mol/L were obtained for 8.0?×?10?8 to 4.8?×?10?6?mol/L antimony(III). The response shows that the sensor enhances the sensitivity of antimony due to the high conductivity and large surface areas of the ionic liquid, graphene, and gold nanoparticles. This electrode may provide a new sensing platform for the determination of antimony.  相似文献   

13.
The electrocatalytic oxidation of oxalate at several carbon based electrodes including basal plane (BPPG) and edge plane (EPPG) pyrolytic graphite and glassy carbon (GC) electrode, was studied. The electrodes were examined for the sensing of oxalate ions in aqueous solutions and all three electrodes showed a response to oxalate additions. The peak of oxalate oxidation at BPPG electrode appeared at lower potential, +1.13 V vs. SCE, than at EPPG (+1.20 V vs. SCE) and GC electrode (+1.44 V vs. SCE). Oxalate oxidation at BPPG electrode was studied in more details for response characteristics (potential and current), effects of pH, temporal characteristics of response potential and current. The results indicated that oxalate oxidation proceeds as two‐electron process at the BPPG electrode with a transfer coefficient β and a diffusion coefficient D evaluated to be 0.45 and 1.03 (±0.04)×10?5 cm2 s?1 respectively. The BPPG electrode was found to be suitable for oxalate determination in aqueous media showing linear response to oxalate concentration with a sensitivity of 0.039 AM?1 and a limit of detection of 0.7 μM.  相似文献   

14.
A square wave voltammetric procedure for the determination of trace amounts of Fe(III) was developed at an unmodified edge plane pyrolytic graphite (EPPG) electrode and a screen printed electrode (SPE). This simple procedure was applied to real samples of commercially bottled mineral water. Sensitive results in the micromolar region could be achieved without modification of the electrode. Using the WHO guideline limits for the Fe(III) concentration in drinking water, recovery percentages at an EPPG gave 103 % and 107 %, and 98.6 % and 95.0 % at a SPE for the 5.36 µM (0.3 mg L?1) and 53.6 µM (3.0 mg L?1) additions of Fe(III), respectively.  相似文献   

15.
A method using flow injection (FI) with amperometric detection at anodized boron-doped diamond (BDD) thin films has been developed and applied for the determination of tetracycline antibiotics (tetracycline, chlortetracycline, oxytetracycline and doxycycline). The electrochemical oxidation of the tetracycline antibiotics was studied at various carbon electrodes including glassy carbon (GC), as-deposited BDD and anodized BDD electrodes using cyclic voltammetry. The anodized BDD electrode exhibited well-defined irreversible cyclic voltammograms for the oxidation of tetracycline antibiotics with the highest current signals compared to the as-deposited BDD and glassy carbon electrodes. Low detection limit of 10 nM (signal-to-noise RATIO = 3) was achieved for each drug when using flow injection analysis with amperometric detection at anodized BDD electrodes. Linear calibrations were obtained from 0.1 to 50 mM for tetracycline and 0.5–50 mM for chlortetracycline, oxytetracycline and doxycycline. The proposed method has been successfully applied to determine the tetracycline antibiotics in some drug formulations. The results obtained in percent found (99.50–103.01%) were comparable to dose labeled.  相似文献   

16.
This work presents a disposable bismuth‐antimony film electrode fabricated on screen‐printed electrode (SPE) substrates for lead(II) determination. This bismuth‐antimony film screen‐printed electrode (Bi‐SbSPE) is simply prepared by simultaneously in situ depositing bismuth(III) and antimony(III) with analytes on the homemade SPE. The Bi‐SbSPE can provide an enhanced electrochemical stripping signal for lead(II) compared to bismuth film screen‐printed electrodes (BiSPE), antimony film screen‐printed electrodes (SbSPE) and bismuth‐antimony film glassy carbon electrodes (Bi‐SbGC). Under optimized conditions, the Bi‐SbSPE exhibits attractive linear responses towards lead(II) with a detection limit of 0.07 µg/L. The Bi‐SbSPE has been demonstrated successfully to detect lead in river water sample.  相似文献   

17.
The electrochemical assay of bromide and iodide ions at boron-doped diamond (BDD) electrode was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). Comparison experiments were carried out using a glassy carbon (GC) electrode. The BDD electrode exhibited well-resolved and irreversible reduction voltammograms, while the GC electrode provided only an ill-defined response. Cyclic voltammetric signals at BDD electrode for 10 mM Br and I were observed at 561 and 125 mV vs. SCE; the values shifted negatively for 228.7 and 187.5 mV, respectively, compared to those at GC electrode. It was also found that the peak current of Br and I was in direct proportion to the scan rate, which is indicative of a surface confined reduction process. Sensitive amperometric responses for Br and I were obtained covering the linear ranges 0.666 μM–1 mM and 13.3 nM–1 mM, respectively, and their detection limits were 0.53 μM and 1.67 nM, respectively, under the optimum pH and applied potential. The amperometric response was very reproducible and stable with satisfactory recovery results. __________ From Zhurnal Analiticheskoi Khimii, Vol. 60, No. 11, 2005, pp. 1193–1199. Original English Text Copyright ? 2005 by Jing Wu, Xiaoli Li, Cunxi Lei, Xumei Wu, Guoli Shen, and Rugin Yu. This article was submitted by the authors in English.  相似文献   

18.
Brett CM  Fungaro DA 《Talanta》2000,50(6):1223-1231
Mercury-thin film electrodes coated with a thin film of poly(ester sulphonic acid) (PESA) have been investigated for application in the analysis of trace heavy metals by square wave anodic stripping voltammetry using the batch injection analysis (BIA) technique. Different polymer dispersion concentrations in water/acetone mixed solvent are investigated and are characterised by electrochemical impedance measurements on glassy carbon and on mercury film electrodes. The influence of electrolyte anion, acetate or nitrate, on polymer film properties is demonstrated, acetate buffer being shown to be preferable for stripping voltammetry applications. Although stripping currents are between 30 and 70% less at the coated than at bare mercury thin film electrodes, the influence of model surfactants on stripping response is shown to be very small. The effect of the composition of the modifier film dispersion on calibration plots is shown; however, detection limits of around 5 nM are found for all modified electrodes tested. This coated electrode is an alternative to Nafion-coated mercury thin film electrodes for the analysis of trace metals in complex matrices, particularly useful when there is a high concentration of non-ionic detergents.  相似文献   

19.
New insights into the functioning, i.e. electrochemical behaviour and analytical performance, of in situ prepared antimony film electrodes (SbFEs) under square-wave anodic stripping (SW-ASV) and cyclic (CV) voltammetry conditions are presented by studying several key operational parameters using Pb(II), Cd(II) and Zn(II) as model analyte ions. Five different carbon- and metal-based substrate transducer electrodes revealed a clear advantage of the former ones while the concentration of the precursor Sb(III) ion exhibited a distinct influence on the ASV functioning of the SbFE. Among six acids examined as potential supporting electrolytes the HNO3 was demonstrated to yield nearly identical results in conducting ASV experiments with SbFE as so far almost exclusively used HCl. This is extremely important as HNO3 is commonly employed acidifying agent in trace metal analysis, especially in elemental mass spectrometry measurements. By carrying out a systematic CV and ASV investigation using a medium exchange protocol, we confirmed the formation of poorly soluble oxidized Sb species at the substrate electrode surface at the end of each stripping step, i.e. at the potentials beyond the anodic dissolution of the antimony film. Hence, the significance of the cleaning and initializing the surface of a substrate electrode after accomplishing a stripping step was thoroughly studied in order to find conditions for a complete removal of the adhered Sb-oxides and thus to assure a memory-free functioning of the in situ prepared SbFE. Finally, the practical analytical application of the proposed ASV method was successfully tested and evaluated by measuring the three metal analytes in ground (tap) and surface (river) water samples acidified with HNO3. Our results approved the appropriateness of the SbFE and the proposed method for measuring low μg L−1 levels of some toxic metals, particularly taking into account the possibility of on-field testing and the use of low cost instrumentation.  相似文献   

20.
The electrochemical response of sodium levo‐thyroxin (T4) at the surface of an edge plane pyrolytic graphite (EPPG) electrode is investigated using cyclic voltammetric technique in the presence of 0.1 M HCl as supporting electrolyte. T4 underwent totally irreversible oxidation at this system and a well‐defined peak at 821 mV was obtained. Compared to the signals obtained in the optimized conditions at bare glassy carbon and carbon paste electrodes, the oxidation current of T4 at an EPPG electrode was greatly enhanced. The electrochemical process of T4 was explored and the experimental conditions were optimized. The oxidation peak current represented a linear dependence on T4 concentration from 0.01 to 10 µM. The detection limit of 3 nM (S/N=3) was obtained for 250 s accumulation at 0.3 V. Determination of T4 in a synthetic serum sample demonstrated that this sensor has good selectivity and high sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号