共查询到20条相似文献,搜索用时 11 毫秒
1.
Fariba Tadayon Ali Katebi Abbas Afkhami Yunes Panahi 《International journal of environmental analytical chemistry》2013,93(9):901-915
A new potentiometric sensor for the rapid determination of Hg2+ based on modified carbon paste electrode consisting of room temperature ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), multi-walled carbon nanotubes (MWCNTs), alumina nanoparticles and a synthetic macrocyclic diamide ‘7,10,13-triaza-1-thia-4,16-dioxa-6,14-dioxo-2,3;17,18-dinaphtho-cyclooctadecane’ as an efficient ionophore was constructed. Prepared composite is an ideal paste because it has low drift of potential, high selectivity and fast response time (10 s), which leads to a more stable potential signal. The morphology and properties of electrodes surface were characterised by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. A linear dynamic range of 2.01–2.01 × 107 µg L?1 with detection limit of 1.40 µg L?1 Hg2+ was obtained at pH range of 2.5 to 4.5. The prepared modified electrode shows several advantages such as simple preparation method, high stability of the composite paste, high sensitivity, long-term life time (at least 13 weeks) and remarkable potentiometric reproducibility. The modified electrode was successfully applied for the accurate determination of trace amounts of Hg 2+ in environmental samples. 相似文献
2.
Ali Shirzadmehr Mosayeb Rezaei Hasan Bagheri Hosein Khoshsafar 《International journal of environmental analytical chemistry》2016,96(10):929-944
In this research, a new strategy for construction of a development potentiometric carbon paste Zn2+-ion selective electrode based on a novel nano-sensing layer is suggested. The proposed nano-sensing layer was prepared with the addition of a synthesised Zn2+-ion imprinted polymer nanoparticles ‘as an efficient sensing agent’ into the carbon paste matrix consisting of graphite powder, nanographene-composite ‘graphene nanosheets decorated with silver nanoparticles’ and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ‘ an ionic liquid ’, as the conducting binder. Under the optimised experimental conditions, the suggested nanographene-composite potentiometric sensor presented a low detection limit of 1.93 × 10?1 μg L?1 and a linear analytical range from 2.62 × 10?1 to 6.54 × 105 μg L?1 with an excellent Nernstian slope of 29.80 mV decade?1. The proposed zinc selective sensor was successfully applied for the highly sensitive determination of trace amounts of Zn2+ in environmental and biological samples with satisfactory results. 相似文献
3.
Meiling Wang Mengzhi Yang Qian Sun Yunqiao Gao 《International journal of environmental analytical chemistry》2015,95(11):969-979
A facile method was developed for the detection of Brilliant Blue FCF (BB FCF) (E133), a synthetic soluble colorant in common beverages. The method is based on a new composite of multi-walled carbon nanotube (MWCNT)-graphite oxide (GO)-room temperature ionic liquids (MWCNT/GO-RTIL) of 1-butyl-3-methylimidazolium hexafluorophosphate with high dispersibility and strong conductivity. Differential pulse stripping voltammetry (DPSV) and the MWCNT/GO-RTIL composite-modified glassy carbon electrode (GCE) were used to determine the BB FCF in this work. Under the optimum experimental conditions, the oxidation current of BB FCF was proportional to its concentration in two linear ranges, from 6.34 μg kg?1 to 7.93 × 102 μg kg?1 and 7.93 × 102 μg kg?1 to 7.93 × 103 μg kg?1.The detection limit was down to 3.01 μg kg?1 at signal-to-noise ratio of 3. Also, this method has been successfully applied in the determination of BB FCF in common beverage samples, including RIO cocktail, Bacardi Breezer and Reinnbow rum dinks. The assay results of BB FCF in drink samples obtained by the proposed method were in a good agreement with the reference values detected by high performance liquid chromatography (HPLC). The proposed method provided a useful tool for the assay of BB FCF in drink samples. 相似文献
4.
Ali A. Ensafi Hassan Karimi-Maleh M. Keyvanfard 《International journal of environmental analytical chemistry》2013,93(6):650-660
The electrochemical response of a modified-carbon nanotubes paste electrode with p-aminophenol was investigated as an electrochemical sensor for sulfite determination. The electrochemical behaviour of sulfite was studied at the surface of the modified electrode in aqueous media using cyclic voltammetry and square wave voltammetry. It has been found that under the optimum condition (pH 7.0) in cyclic voltammetry, the oxidation of sulfite occurs at a potential about 680?mV less positive than that of an unmodified-carbon nanotubes paste electrode. Under the optimized conditions, the electrocatalytic peak current showed linear relationship with sulfite concentration in the range of 2.0?×?10?7–2.8?×?10?4?mol?L?1 with a detection limit of 9.0?×?10?8?mol?L?1 sulfite. The relative standard deviations for ten successive assays of 1.0 and 50.0?µmol?L?1 sulfite were 2.5% and 2.1%, respectively. Finally, the modified electrode was examined as a selective, simple and precise new electrochemical sensor for the determination of sulfite in water and wastewater samples. 相似文献
5.
Abbas Afkhami Hasan Bagheri Ali Shirzadmehr Hosein Khoshsafar Pegah Hashemi 《Electroanalysis》2012,24(11):2176-2185
A novel and effective potentiometric sensor for the rapid determination of Cd2+ based on carbon paste electrode consisting of the room temperature ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate, multiwalled carbon nanotubes, silica nanoparticles and ionophore was constructed. The prepared composite has a low potential drift, high selectivity and fast response time, which leads to a more stable potential signal. A linear dynamic range of 4.50×10?9–1.00×10?1 mol L?1 with a detection limit of 2.00×10?9 mol L?1 was obtained. The modified electrode was successfully applied to the accurate determination of trace amounts of Cd2+ in environmental and biological samples. 相似文献
6.
A new carbon paste electrode modified with tetramethyl thiuram disulfide is prepared to use as copper potentiometric sensor in batch and flow analysis. The influence of pH and carbon paste composition on the potentiometric response is studied. The principal parameters of the flow system are optimized and the detection limits and the selectivity coefficients of the potentiometric sensor are calculated for static and flow mode. In both cases, the sensor shows high selectivity to copper ions but in flow analysis this selectivity is higher. The obtained detection limits are 4.6 × 10−8 M for batch measurements and 2.0 × 10−7 M for on-line analysis. The potentiometric sensor is applied to copper(II) determination in real samples in static and flow measurements. In both analysis modes, successful results are obtained. 相似文献
7.
New triiodomercurate-modified carbon paste electrode for the potentiometric determination of mercury
A new tetrazolium-triiodomercurate-modified carbon paste electrode has been described for the sensitive and selective determination of mercury. The electrode shows a stable, near-Nernstian response for 1×10−3 to 6×10−6 M [HgI3]− at 25 °C over the pH range of 4.0-9.0, with an anionic slope of 55.5±0.4 mV. The lower detection limit is 4×10−6 M with a fast response time of 30-50 s. Selectivity coefficients of a number of interfering anions and iodo complexes of some metal ions have been estimated. The interference from many of the investigated ions is negligible. The determination of 1-200 μg/ml of mercury in aqueous solutions shows an average recovery of 98.5% and a mean relative standard deviation of 1.6% at 50.0 μg/ml. The direct determination of mercury in spiked wastewater, metal amalgams and dental alloy gave results that compare favorably with those obtained by the cold vapor atomic absorption spectrometric method. Potentiometric titration of mercury and phenylmercury acetate with standard potassium iodide has been monitored using the developed triiodomercurate-carbon paste electrode (CPE) as an end point indicator electrode. 相似文献
8.
Catalysis of the electrochemical oxygen reduction reaction (ORR) on a pyrolytic graphite electrode (PGE) by iron-containing
superoxide dismutase (Fe-SOD) is investigated for the first time using cyclic voltammetry and electrochemical impedance spectroscopy.
The study is carried out in three room-temperature ionic liquids (RTILs), namely, 1-ethyl-3-methylimidazolium tetrafluoroborate
(EMIBF4), 1-propyl-3-methylimidazolium tetrafluoroborate (PMIBF4), and 1-butyl-3-methylimidazolium tetrafluoroborate (EMIBF4). The results demonstrate that in EMIBF4, Fe-SOD exhibits the most satisfactory catalysis for ORR, with the standard rate constant of ORR on bare PGE, k
s, increasing from 3.9 to 5.1 times 10−3 cm s−1, while in PMIBF4 and BMIBF4 containing Fe-SOD k
s increases from 2.6 to 3.6 and from 1.4 to 2.2 times 10−3 cm s−1, respectively. In addition to the increased k
s, adding Fe-SOD renders the formal potential of ORR more positive. To accelerate the electron transfer, multi-walled carbon
nanotubes (MWCNTs) are employed to modify PGE, consequently, yielding the dramatically increased peak current and k
s. For MWCNTs-modified PGE in EMIBF4 free of Fe-SOD, k
s increases from 3.9 to ∼7.1 times 10−3 cm s−1. The ORR catalysis by Fe-SOD in the presence of Fe-SOD is also evidenced by the formal-potential shift in the positive direction.
With MWCNTs accounting for the larger k
s and Fe-SOD being responsible for the formal-potential shift, the catalysis of ORR is satisfactory. Chronocoulmetry experiments
proved that some Fe-SOD could be adsorbed on PGE. After analyzing the results, dismutation of superoxide anion O
2
−
by Fe-SOD is thought to be the main reason for the formal-potential shift. The different polarity of RTILs is probably partly
responsible for different k
s obtained in different RTILs. Basing on an earlier proposition, the catalysis of ORR by MWCNTs in RTILs is discussed.
Published in Russian in Elektrokhimiya, 2007, Vol. 43, No. 9, pp. 1137–1146.
The text was submitted by the authors in English. 相似文献
9.
MWNTs-IL-Gel/GCE, a glassy carbon electrode modified with multiwalled carbon nanotubes (MWNTs) and ionic liquids (IL), was developed to serve as a sensor for simultaneous determination of Hydroquinone (HQ) and catechol (CC) in this paper. The modified GCE showed two well-defined redox waves for HQ and CC in both CV and DPV with a peak potential separation of ca. 0.1 V, which was large enough for simultaneous detection. The results revealed that the oxidation of HQ and CC with the enhancement of the redox peak current and the decrease of the peak-to-peak separation exhibit excellent electrocatalytic behaviors. A high sensitivity of 1.8×10(-7)M with detection limits of 6.7×10(-8)M and 6.0×10(-8)M (S/N=3) for HQ and CC were obtained. Moreover, the constants of apparent electron transfer rate of HQ and CC at MWNTs-IL-Gel/GCE were calculated as 7.402 s(-1) and 8.179 s(-1), respectively, and the adsorption quantity of HQ and CC was 1.408×10(-6) mol cm(-2) with chronocoulometry. The developed sensor can be applied to determinate directly of HQ and CC in aqueous solution. 相似文献
10.
Molecularly imprinted polymer based potentiometric sensor for the determination of hydroxyzine in tablets and biological fluids 总被引:1,自引:0,他引:1
Javanbakht M Fard SE Mohammadi A Abdouss M Ganjali MR Norouzi P Safaraliee L 《Analytica chimica acta》2008,612(1):65-74
Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. In this work, a biomimetic potentiometric sensor, based on a non-covalent imprinted polymer, was fabricated for the recognition and determination of hydroxyzine in tablets and biological fluids. The molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization, using hydroxyzine dihydrochloride as a template molecule, methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensor showed a high selectivity and a sensitive response to the template in aqueous system. The MIP-modified electrode exhibited a Nernstian response (29.4 ± 1.0 mV decade−1) in a wide concentration range of 1.0 × 10−6 to 1.0 × 10−1 M with a lower detection limit of 7.0 × 10−7 M. The electrode demonstrated a response time of ∼15 s, a high performance and a satisfactory long-term stability (more than 5 months). The method has the requisite accuracy, sensitivity and precision to assay hydroxyzine in tablets and biological fluids. 相似文献
11.
A carbon-paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one (2,7-BF) and carbon nanotubes (CNTs) was used for the sensitive and selective voltammetric determination of N-acetylcysteine (NAC). The mediated oxidation of NAC at the modified electrode was investigated by cyclic voltammetry (CV). Also, the values of catalytic rate constant (k), and diffusion coefficient (D) for NAC were calculated. Differential pulse voltammetry (DPV) of NAC at the modified electrode exhibited two linear dynamic ranges with a detection limit (3σ) of 52.0 nmol L−1. DPV was used for simultaneous determination of NAC and acetaminophen (AC) at the modified electrode, and quantitation of NAC and AC in some real samples by the standard addition method. 相似文献
12.
Potentiometric electrodes were developed for the rapid determination of proguanil hydrochloride in pure samples, pharmaceutical preparations and spiked serum and urine samples using PVC membrane,screen printed(SPE), coated wired(CWE), carbon paste(CPE) and modified carbon paste(MCPE)electrodes based on the ion-exchanger of proguanil with phosphotungestic acid(Pr-PT) as a chemical modifier. The prepared electrodes showed Nernestian slopes of 59.7, 58.1, 58.5, 58.5 and 57.0 for the PVC,SPE, CWE, CPE and MCPE for the proguanil ions in a wide concentration range of 1.0 * 10~(-5)–1.0 * 10~(-2)mol L~(-1) at 25°C with detection limits of 7.94 * 10~(-6), 1.0 * 10~(-5), 1.0 * 10~(-6), 7.07 * 10~(-6) and 2.5 * 10~(-6) mol L~(-1), respectively. The prepared electrodes exhibited high proguanil selectivity in relation to several inorganic ions and sugars and they could be successfully utilized for its determination in pure solutions, pharmaceutical preparations and serum and urine samples using the direct potentiometry and standard addition methods with very good recovery values. 相似文献
13.
A simple and sensitive sensor is described for the determination of acetylspiramycin (ASPM) based on a single-wall carbon
nanotubes (SWNTs)-dihexadecyl hydrogen phosphate (DHP) film coated glassy carbon electrode (GCE). Compared with a bare GCE,
the SWNTs-DHP film modified GCE exhibits excellent enhancement effects on the electrochemical oxidation of ASPM. A well-defined
oxidation peak of ASPM occurs at 0.89 V in 0.1 mol·L−1 phosphate buffer (pH 5.5), which was used to determine ASPM. The electrochemical behavior of ASPM at the SWNTs-DHP modified
GCE was examined by cyclic voltammetry and differential pulse voltammetry. The experimental parameters were optimized and
a direct electrochemical method for the determination of ASPM is proposed. Under optimum conditions, the oxidation peak current
is linear to the concentration of ASPM in the range of 5.0–100 μg·mL−1, with a detection limit of 1 μg·mL−1. The SWNTs-DHP film modified electrode also provides an efficient way of eliminating interferences from some inorganic species
in the solution. This sensor was successfully utilized to determine ASPM in drugs. 相似文献
14.
制备了纳米Nd2O3/多壁碳纳米管修饰电极并用于亚硝酸盐的检测。采用原子力显微镜、X-粉末衍射仪表征制备的纳米材料。实验表明:修饰电极对亚硝酸根的氧化具有明显地电催化作用。利用示差脉冲伏安法测定亚硝酸盐,其氧化峰电流和其浓度在20μmol·L-1-20 mmol·L-1范围内呈现良好的线性关系,检测线为0.83μmol·L-1(S/N=3)。更重要的是,实验结果表明:与Nd2O3修饰电极相比,多壁碳纳米管能显著地提高电极的稳定性。此外,修饰电极具有良好的选择性,能用于样品的检测,结果令人满意。 相似文献
15.
16.
Nehad A. Abdallah 《Electroanalysis》2021,33(5):1283-1289
A novel electrode was fabricated for the quantitation of Fe2+ ion. It was based on the covalent attachment of the gemifloxacin molecule (the recognition element) to the surface of MWCNTs to be incorporated as an electroactive material. Linear response of Fe2+ ions was found in the concentration range of 1×10−2 mol L−1 to 1×10−8 mol L−1 with a Nernstian slope of 30.37 ±0.3 (mV/decade) and attained a stable response within 5 s. The sensor exhibited LOD value of 4.8×10−9 mol L−1. It was applied in the monitoring of Fe2+ concentration in multi-vitamins tablets, tap water and milk samples with acceptable recovery ranged from 94.00 % to 102.00 %. 相似文献
17.
A novel carbon paste ion selective electrode for determination of trace amount of lutetium was prepared. Modified (functionalized) multiwalled carbon nanotubes (f‐MWCNTs) were used for improvement of a lutetium carbon paste sensor response. MWCNTs have a good conductivity which helps the transduction of the signal in carbon paste electrode. In this work it is shown that introducing certain functional groups on MWCNTs can improve the electrode signals. The electrode composition of 20 % paraffin oil, 56 % graphite powder, 18 % ionophore and 6 % f‐MWCNTs showed the stable potential response to Lu3+ ions with the Nernstian slope of 21.1 (±0.3) mV decade?1 over a wide linear concentration range of 1.0×10?6–1.0×10?1 mol L?1. The electrode has fast response time (<15 s) and long term stability (about one month). 相似文献
18.
Taher Alizadeh Sahar Mirzaee Faride Rafiei 《International journal of environmental analytical chemistry》2017,97(13):1283-1297
A novel potentiometric sensor, based on carbon paste electrode (CPE), modified with ion-imprinted polymer (IIP) and multi-walled carbon nanotubes (MWCNTs), is introduced for detection of chromium (III). The IIP nanomaterial was synthesised and characterised by using scanning electron microscopy and Fourier Transform Infrared. The modification of the CPE with the IIP (as a ionophore) resulted in an all-solid-state Cr(III)-selective sensor. However, the presence of appropriate amount of MWCNTs in the electrode composition was found to be necessary to observe Nernstian response. The optimised electrode composition was 76.7% graphite, 14.3% binder, 5% IIP, and 4% CNT. The proposed sensor exhibited Nernstian slope of 20.2 ± 0.2 mV decade?1 in the working concentration range of 1.0 × 10?6?1.0 × 10?1 mol L?1 (52 µg L?1–5.2 g L?1), with a detection limit of 5.9 × 10?7 mol L?1 (30.68 µg L?1) and a fast response time of less than 40 s. It displayed a stable potential response in the pH range of 2–5. It exhibited also high selectivity over some interfering ions. The proposed sensor was successfully applied for the determination of Cr(III) in real samples (sea, river water and soil). 相似文献
19.
An electrochemical sensor based on self-made nano-porous pseudo carbon paste electrode (nano-PPCPE) has been successfully developed, and used to detect Cd2+ and Pb2+. The results showed that the electrodes can quantitatively detect trace Cd2+ and Pb2+, and with satisfied limit of detection, which has great significance in electrochemical analysis and detection. 相似文献
20.
《Arabian Journal of Chemistry》2023,16(5):104613
A tin disulfide and multi-walled carbon nanotube (SnS2/CNTs) electrochemical sensor was constructed for the sensitive and selective determination of rutin in plants. Tin disulfide nanoflowers with various particle sizes were prepared by controlling the reaction time and composited with multi-walled CNTs. The morphology, crystal structure, and chemical composition of these SnS2/CNTs composites were characterized using XRD, XPS, and SEM-EDS. Results illustrated that the SnS2/CNTs had a large specific surface area, good conductivity, and remarkable electrocatalytic performance. The pH of the buffer solution, the scanning rate, and the amount of modified material were also optimized for the rapid detection of rutin. A 2-electron-2-proton mechanism, involving a few rapid and consecutive stages, was speculated to occur during rutin oxidation, based on the observed slope of -53 mV/pH. There was an appreciable linear relationship between the reductive peak current from DPV and the rutin concentration, ranging from 0.005-0.05 µmol/L and 0.1-6 µmol/L, with a detection limit of 0.22 nmol/L (S/N = 3). The sensor also demonstrated good selectivity, excellent sensitivity, and reproducibility when analyzing rutin in real plant samples, with satisfactory recovery, and was also highly consistent with results of HPLC, and thus could be used to evaluate the medicinal value of natural vegetation. 相似文献