首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Results are reported for a comparative photodegradation study of atrazine and desethylatrazine in water using TiO2/H2O2, FeCl3/H2O2, and photolysis. Deionized water and ground water spiked with atrazine or desethylatrazine at 36 micrograms/L were irradiated by using a xenon arc lamp and/or sunlight. After irradiation, the water samples containing the spiked pesticides were preconcentrated by using C18 solid-phase extraction disks and analyzed by gas chromatography with nitrogen-phosphorus and mass spectrometric detection. A relative percentage of 7% desethylatrazine was detected in samples removed after 20 and 4 min of sensitized photodegradation with TiO2 and Fe3+, respectively. Atrazine and desethylatrazine did not degrade when solar irradiation (in winter) and deionized water were used. Atrazine degraded faster than desethylatrazine when a xenon arc lamp or sunlight plus FeCl3 was used, with half-lives varying from 5 to 11 min and from 19 to 26 min, respectively. In other photodegradation experiments, the degradation of atrazine was slightly higher than that of desethylatrazine. This study shows that desethylatrazine has slightly higher stability than atrazine in environmental water samples; this stability accounts for the frequent detection of desethylatrazine together with atrazine in natural waters.  相似文献   

2.
Benzophenone (BP) type UV filters are common environmental contaminants that are posing a growing health concern due to their increasing presence in water. Different studies have evidenced the presence of benzophenones (BP, BP-1, BP-2, BP-3, BP-4, BP-9, HPB) in several environmental matrices, indicating that conventional technologies of water treatment are not able to remove them. It has also been reported that these compounds could be associated with endocrine-disrupting activities, genotoxicity, and reproductive toxicity. This review focuses on the degradation kinetics and mechanisms of benzophenone-type UV filters and their degradation products (DPs) under UV and solar irradiation and in UV-based advanced oxidation processes (AOPs) such as UV/H2O2, UV/persulfate, and the Fenton process. The effects of various operating parameters, such as UV irradiation including initial concentrations of H2O2, persulfate, and Fe2+, on the degradation of tested benzophenones from aqueous matrices, and conditions that allow higher degradation rates to be achieved are presented. Application of nanoparticles such as TiO2, PbO/TiO2, and Sb2O3/TiO2 for the photocatalytic degradation of benzophenone-type UV filters was included in this review.  相似文献   

3.
4.
UV/H2O2/micro-aeration is a newly developed process based on UV/H2O2. Halogenated pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) photochemical degradation in aqueous solution was studied under various solution conditions. The UV intensity, initial 2,4-D concentrations and solution temperature varied from 183.6 to 1048.7 μW·cm−2, from 59.2 to 300.0 μg·L−1 and from 15 to 30°C, respectively. The concentration of hydrogen peroxide (H2O2) and pH ranged from 0 to 50 mg·L−1 and 5 to 9, and different water quality solutions (tap water, distilled water and deionized water) were examined in this study. With initial concentration of about 100 μg·L−1, more than 95.6% of 2,4-D can be removed in 90 min at intensity of UV radiation of 843.9 μW·cm−2, H2O2 dosage of 20 mg·L−1, pH 7 and room temperature. The removal efficiency of 2,4-D by UV/H2O2/micro-aeration process is better than UV/H2O2 process. The photodecomposition of 2,4-D in aqueous solution follows pseudo-first-order kinetics. 2,4-D is greatly affected by UV irradation intensity, H2O2 dosage, initial 2,4-D concentration and water quality solutions, but it appears to be slightly influenced by pH and temperature. There is a linear relationship between rate constant k and UV intensity and initial H2O2 concentration, which indicates that higher removal capacity can be achieved by the improvement of these factors. Finally, a preliminary cost analysis reveals that UV/H2O2/micro-aeration process is more cost-effective than the UV/H2O2 process in the removal of 2,4-D from drinking water.  相似文献   

5.
Under conditions of continuous ozone gas application and constant ultrasonic radiation (UR), chitosan was effectively degraded. The existence of a synergetic effect of ozone and ultrasonic radiation on the degradation of chitosan was demonstrated by means of determination of viscosity-average molecular weight. The efficiency of the ozone and ultrasonic radiation treatment compared with acid hydrolysis on degradation of chitosan was investigated. In addition, the structure of the degraded chitosan was characterized by FT-IR and 13C NMR spectral analyses. The whole initial chitosan's monomer structure still existed in the resulting degraded chitosan with different low molecular weight. The pilot study of the chemical stability of the degraded chitosan was carried out. There was no significant change of the total degree of deacetylation (DD) of degraded chitosan compared with the initial chitosan. The combined O3/UR technique is promisingly suitable for scale-up manufacture of low-molecular-weight chitosan.  相似文献   

6.
Oxidation of free cyanide in aqueous suspensions of three commercial TiO2 specimens, with different anatase crystal size, has been carried out in a batch photoreactor by simultaneously applying ozonation and photocatalysis. Dissolved ozone participates both in homogeneous and catalytic reactions with cyanide; the extents of these two processes are comparable to that of the photodegradation with oxygen. The reactivity results are well described by the Langmuir-Hinshelwood kinetic model, providing the values of the kinetic and equilibrium adsorption constants for the catalytic and photocatalytic reactions contributing to cyanide oxidation. The cyanide concentration decreases faster with time for catalysts with increasing anatase crystal size, being more marked under UV irradiation. EPR studies on gaseous ozone adsorption on the three samples in the dark have shown stronger ozone interactions with Ti4+ and O2? ions of the samples with largest anatase crystal size, leading to the formation of significant signals of Ti3+ and s O??O2 radicals than with the anatase with the lowest crystal size, where ozone was mainly adsorbed on water molecular arrangements covering its surface. The hampering of the ozone and/or cyanide adsorption by the water molecular arrangements covering the surface of the catalyst with the lowest crystal size would justify the low cyanide degradation rate observed for this sample.  相似文献   

7.
In this study, the role of oxygen in the regeneration of Fe(III) during the degradation of atrazine in UV/Fe(III) process was studied. The degradations of atrazine in UV/Fe(III) and UV-photolysis processes in the presence and absence of oxygen were compared. The results showed that the degradations of atrazine in these processes followed the pseudo-first-order kinetics well. The process exhibiting the highest rate constant (k) was UV/Fe(III)/air process, because k-value for UV/Fe(III)/air process was about 1.47, 2.23 and 2.56 times of those for UV/Fe(III)/N2, UV/air and UV/N2 processes, respectively. The degradation of atrazine was enhanced by oxygen in UV/Fe(III) process and the enhancement was more remarkable at higher initial concentrations of Fe(III). The investigation into the changes of Fe(III) concentrations demonstrated that the presence of oxygen led to the regeneration of Fe(III), which resulted in the enhancement of atrazine degradation. With air bubbling, the ferric ions were 25% more than those with N2 bubbling. The experimental data showed the regeneration of Fe(III) required the excited organic molecules and oxygen and on the basis of these results, the regeneration mechanism of Fe(III) was proposed. It was also found that due to the oxidation of Fe(II), the degradation of atrazine in UV/Fe(II)/air process was effective at a low Fe(II) concentration of 7 mg/L, similar to that in UV/Fe(III)/air process. This study makes clear the role of oxygen in the regeneration of Fe(III), and thus it provides a guide to reduce the input of Fe(III) and is helpful to the application of UV/Fe(III) process in practice.  相似文献   

8.
The results of degradation efficiency of 2-sec-butyl-4,6-dinitrophenol (DNBP) in a batch system by various advanced oxidation processes revealed the order of TiO2/UV/O3 > TiO2/O3 > UV/O3 > O3 > UV/TiO2. All processes followed pseudo-first order kinetics. The influence of operational parameters such as initial pH, initial concentration of DNBP, ozone and catalyst dosage on the TiO2/UV/O3 process, which was the most significant investigated method. The ozone dosage was found to have the noticeable impact on the process; however, initial pH and TiO2 dosage were less effective. The mineralization of 40 mg/L of DNBP and petrochemical wastewater under the obtained optimal conditions was monitored by total organic carbon and chemical oxygen demand, respectively. The results demonstrated that the TiO2/UV/O3 process was a very effective method for degradation and mineralization of DNBP in aqueous solutions and industrial wastewater. The degradation intermediates were identified by GC–MS.  相似文献   

9.
It is important to develop a catalyst that has high catalytic activity and can improve the degradation efficiency of refractory organic pollutants in the catalytic ozonation process. In this study, Fe-Mn-Cu-Ce/Al2O3 was synthesised via impregnation calcination for catalytic ozonation of bio-treated coking wastewater. The physical and chemical characteristics of the catalysts were analysed using X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller nitrogen adsorption–desorption methods. The effects of catalyst dosage, pH, and reflux ratio on the degradation efficiency of wastewater were examined in laboratory-scale experiments. The chemical oxygen demand (COD) removal rate of bio-treated coking wastewater was estimated to be 52.76 % under optimal conditions. The experiments on the catalytic mechanism demonstrated that the surface hydroxyl formed by the Lewis acid sites on the surface of the catalyst can react with ozone as the active site forming the active oxygen (·OH, ·O2, and 1O2), thereby efficiently degrading the organic pollutants in coking wastewater. Furthermore, a pilot-scale experiment on the catalytic ozonation of bio-treated coking wastewater was carried out using an Fe-Mn-Cu-Ce/Al2O3 catalyst, while the effects of the initial pollutant concentration, ozone concentration, and gas flow on the COD removal rate were studied on a pilot scale. It was found that the COD removal rate of the wastewater was ~ 60 % under optimal parameters. After the treatment, the wastewater steadily reached the coking wastewater discharge standard (COD < 80 mg/L), while the operating cost of catalytic ozonation reached ~ 0.032$/m3, thereby paving the way toward economic engineering applications. The COD degradation kinetics in the bio-treated coking wastewater followed pseudo-second-order kinetics. Three-dimensional fluorescence and gas chromatography–mass spectrometry revealed that macromolecular organic pollutants in the bio-treated coking wastewater were greatly degraded. In summary, Fe-Mn-Cu-Ce/Al2O3 exhibited good reusability, high catalytic activity, and low cost and has a wide application prospect in the treatment of coking wastewater.  相似文献   

10.
A model for scaling up a homogeneous photoreactor was developed and experimentally verified in a pilot‐plant‐size apparatus. The procedure is exemplified by the oxidation of dilute aqueous HCOOH solutions with UV radiation (254 nm) and H2O2. First, the kinetic model and the kinetic parameters of the HCOOH degradation were obtained in a well‐stirred, small, batch flat‐plate photoreactor (volume=70 ml). The method employed in the analysis of the experimental results yielded reaction‐rate expressions for HCOOH and H2O2 that were independent of the reactor configuration. These kinetic equations and the corresponding kinetic constants were then used in a mathematical, fully deterministic model of a continuous‐flow, 2‐m‐long, annular reactor (0.0065 m2 of cross section for flow) operating in a laminar‐flow regime to predict exit concentrations of HCOOH. Irradiation was provided in both cases by two different types of germicidal lamps. No additional experiments were made to adjust the reactor‐model parameters. Theoretical predictions from the representation of the reactor performance obtained were compared with experimental data furnished by experiments in the much‐larger‐size, cylindrical‐flow reactor. Results showed good agreement for the range of variables explored; they corresponded to expected operating conditions in water streams polluted with low concentrations of organic compounds.  相似文献   

11.
This work evaluated the effects of pH on decolorization of C.I. Reactive Red 2 by O3, O3/Fe(II), UV/O3 and UV/O3/Fe(II) systems. At pH 4, the decolorization rate constants of O3, O3/Fe(II), UV/O3 and UV/O3/Fe(II) systems were 1.78, 3.11, 2.04 and 3.18 hr−1, respectively. The decolorization rates and effective energy consumption constants of all systems were higher under basic conditions than under acidic conditions.  相似文献   

12.

A rapid and selective method for the simultaneous determination of triazine herbicides (atrazine, its degradation product desethylatrazine, simazine, prometryn, terbutryn) and N-methylcarbamate insecticides (propoxur, carbaryl and methiocarb) in surface water has been developed. A 0.5 L of the water sample was preconcentrated by passage through a 1 g C18 solid-phase extraction cartridge. The retained compounds were eluted with 5 mL of methanol from the cartridge. The pesticides were separated and quantified by reversed-phase high-performance liquid chromatography with UV diode-array detection. Analytical separation was performed using a concave gradient elution with acetonitrile and water on a C18 column. Prometryn and terbutryn were determined at 240 nm; propoxur, methiocarb at 204 nm and the others at 220 nm. Recoveries varied from 85 to 102% over concentrations at 0.025 and 0.2 µg L?1. The limits of detection for the compounds investigated are in the range of 0.005-0.012 µg L?1.  相似文献   

13.
Photochemical processes involving singlet oxygen (O2(a1Δ)), oxygen atoms, and ozone are critical in determining atmospheric ozone concentrations. Here we report on kinetic measurements and modeling that examine the importance of the reactions of vibrationally excited ozone. Oxygen atoms and O2(a1Δ) were produced by UV laser photolysis of ozone. Time‐resolved absorption spectroscopy was used for O3 concentration measurements. It was found that vibrationally excited ozone formed by O + O2 + M → O3(ν) + M recombination reacts effectively with O2(a1Δ) and O atoms. The reaction O3(υ) + O2(a1Δ) → O + 2O2 results in a reduction of the ozone recovery rate due to O atom regeneration, whereas the reaction O3(υ) + O → 2O2 removes two odd oxygen species, resulting in incomplete ozone recovery. The possible impact of these reactions on the atmospheric O2(a1Δ) and O3 budgets at altitudes in the range of 80–100 km is considered.  相似文献   

14.
UV filters as emerging contaminants are of great concern and their wide detection in aquatic environments indicates their chemical stability and persistence. This review summarized the photolytic and photocatalytic degradation of UV filters in contaminated water. The findings indicated that limited research has been conducted on the photolysis and photocatalysis of UV filters. Photolysis of UV filters through UV irradiation in natural water was a slow process, which was accelerated by the presence of photosensitisers e.g. triplet state of chromaphoric dissolved organic matter (3CDOM*) and nutrients but reduced by salinity, dissolved organic matter (DOM) and divalent cations. UV Photocatalysis of 4-methylbenzylidene camphor and 2-phenylbenzimidazole-5-sulfonic acid was very effective with 100% removal within 30 min and 90 min using medicated TiO2/H2O2 and TiO2, respectively. The radiation source, type of catalyst and oxygen content were key factors. Future research should focus on improved understanding of photodegradation pathways and by-products of UV filters.  相似文献   

15.
This study was conducted to investigate the effect of a photocatalysis/oxidant system for the treatment of humic acid and hazardous heavy metals in aqueous solutions. Hydrogen peroxide, ozone, and potassium peroxodisulfate were tested as oxidants. The effect of oxidant concentration was conducted with a pH of 7, a UV intensity of 64 W, and a TiO2 dosage of 0.3 g L−1. The oxidant addition in the UV/TiO2 system enhanced the degradation efficiency of humic acid and hazardous heavy metals compared to no addition of an oxidant. The addition of oxidants over the amounts of H2O2 50 mg L−1, O3 20 g m−3, and K2S2O8 50 mg L−1 inhibits the system efficiency. The negative effect of higher oxidant concentrations likely results from OH radical quenching caused by the excess oxidant. Therefore, the optimal dosages of oxidants such as a hydrogen peroxide, ozone, and potassium peroxodisulfate were found to be 50 mg L−1, 20 g m−3, and 50 mg L−1, respectively. The degradation efficiency of UV/TiO2/oxidant systems for the removal of humic acid and hazardous heavy metals was much greater in the UV/TiO2/H2O2 system using H2O2 as an oxidant.  相似文献   

16.
A new voltammetric competitive immunosensor selective for atrazine, based on the immobilization of a conjugate atrazine-bovine serum albumine on a nanostructured gold substrate previously functionalized with poliamidoaminic dendrimers, was realized, characterized, and validated in different real samples of environmental and food concern. Response of the sensor was reliable, highly selective and suitable for the detection and quantification of atrazine at trace levels in complex matrices such as territorial waters, corn-cultivated soils, corn-containing poultry and bovine feeds and corn flakes for human use. Selectivity studies were focused on desethylatrazine, the principal metabolite generated by long-term microbiological degradation of atrazine, terbutylazine-2-hydroxy and simazine as potential interferents. The response of the developed immunosensor for atrazine was explored over the 10−2–103 ng mL−1 range. Good sensitivity was proved, as limit of detection and limit of quantitation of 1.2 and 5 ng mL−1, respectively, were estimated for atrazine. RSD values <5% over the entire explored range attested a good precision of the device.  相似文献   

17.
We proposed here a new process coupling dielectric barrier discharge (DBD) plasma with magnetic photocatalytic material nanoparticles for improving yield in DBD degradation of methyl orange (MO). TiO2 doped Fe3O4 (TiO2/Fe3O4) was prepared by the sol-gel method and used as a new type of magnetic photocatalyst in DBD system. It was found that the introduction of TiO2/Fe3O4 in DBD system could effectively make use of the energy generated in DBD process and improve hydroxyl radical contributed by the main surface Fenton reaction, photocatalytic reaction and catalytic decomposition of dissolved ozone. Most part of MO (88%) was degraded during 30 min at peak voltage of 13 kV and TiO2/Fe3O4 load of 100 mg/L, with a rate constant of 0.0731 min?1 and a degradation yield of 7.23 g/(kW h). The coupled system showed higher degradation efficiency for MO removal.  相似文献   

18.
This paper reports the optimized synthesis of zinc molybdates by the hydrothermal method and the combination of ZnMoO4 and peroxymonosulfate (PMS) under UV irradiation for the degradation of pirimicarb. The as‐prepared ZnMoO4 photocatalyst was characterized using X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy and UV–visible diffuse reflectance spectroscopy. The effects of operational parameters in the ZnMoO4/PMS/UV system were evaluated and the results indicated the highest performance is achieved with pH = 9.0, 1 mM PMS and 1 g l?1 ZnMoO4. The degradation efficiency of pirimicarb was 98% after 3 h in the photocatalytic process. A photodegradation mechanism is proposed based on scavenger and electron spin resonance studies to decide the main active species and by using chromatography–mass spectrometry to identify the major intermediates. Pirimicarb degradation is found to be mainly driven by holes and ?O2? radicals, with the contribution of ?OH and SO4?? radicals enhancing the process in the tested catalytic system. The mechanism is proposed involving two routes, dealkylation and decarbamoylation. Lastly, the zinc molybdate photocatalyst is shown to be stable, reusable and efficient in the removal of pirimicarb from real water samples in the presence of PMS, demonstrating potential application in the treatment of contaminated and/or environmental water.  相似文献   

19.
Zinc aluminate and cerium-doped zinc aluminate nanoparticles are synthesised by co-precipitation method. Ammonium hydroxide is used as a precipitating agent. The synthesised compounds are characterised by powder X-ray diffraction (XRD), Fourier transform Infrared spectroscopy (FT-IR), Ultraviolet diffuse reflectance spectroscopy (UV-DRS), Thermogravimetric analysis (TGA), Scanning electron microscopy (SEM) and Surface area measurements. The photocatalytic activity of zinc aluminate and cerium doped zinc aluminate nanoparticles are studied under the UV light and visible light taking methylene blue as a model pollutant. The amount of catalyst, concentration of dye solution and time are optimised under UV-light. Degradation of methylene blue under the UV-light is found to be 99% in 20 min with 10 mg of cerium doped catalyst. Compared to visible light degradation, the degradation of dye under UV-light is higher. Cerium doping in zinc aluminate (ZnAl2O4:Ce3+) increased the photocatalytic activity of zinc aluminate.  相似文献   

20.
HO. radical is an aggressive reagent to abstract hydrogen from diverse substitutes and lead them to degradation, however, in reaction of active oxygen species with lignins, complex phenolic polymers, in dispersed lignocellulose such as pulp for environment-benign delignification, HO. radicals should be eliminated as more as possible to prevent cellulose from unfavorably concomitant degradation. A reaction system of O3 is constructed under UV laser flash irradiation, and HO. radicals are controlled efficiently by it. A new mechanism is proposed, for the first time, that O. radicals generated from reaction of O3 with UV laser flash irradiation might be the contributor to scavenge HO. radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号